
ontology-mediated query
answering
Harnessing knowledge to get more from data

Meghyn Bienvenu (LaBRI - CNRS & University of Bordeaux)

ontology-mediated query answering (omqa)

data

incomplete
database

(ground facts)

ontology
(logical theory)

???

user query
domain knowledge

Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)

2/42

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)

2/42

ontology-mediated query answering (omqa)

data ???

patient data
“Melanie has listeriosis”
“Paul has Lyme disease”

medical knowledge
“Listeriosis & Lyme disease

are bacterial infections”

user query
“Find all patients with
bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?
∙ extend the vocabulary (making queries easier to formulate)
∙ provide a unified view of multiple data sources
∙ obtain more answers to queries (by exploiting domain knowledge)

2/42

today’s talk

Two main objectives:

∙ give a brief introduction to OMQA
∙ show connections between OMQA and theoretical CS

Structure of the talk:

∙ Introductory material
∙ description logic (DL) ontologies, OMQA problem, query rewriting

∙ Understanding query rewriting
∙ natural questions related to size and existence of rewritings
∙ links to circuit complexity, automata, CSP

3/42

introduction to omqa &
query rewriting

our focus: description logic ontologies

Ontologies typically described using logic-based formalisms

In this talk: ontologies formulated in description logics (DLs)
∙ family of decidable fragments of first-order logic (FO)
∙ range from fairly simple to highly expressive
∙ complexity of query answering well understood
∙ lots of practical work on algorithms and implementations
∙ basis for OWL web ontology language (W3C standard)

Today, we’ll mainly focus on three particular DLs:
∙ ALC, EL, DL-LiteR

5/42

dl basics

Building blocks of DLs:

∙ concept names (unary predicates, classes) Prof, Course

∙ role names (binary predicates, properties) teaches

∙ individual names (constants) marie, inf100

Build complex concepts and roles using constructors. For example:

∙ Non-professors: ¬Prof
∙ Profs who teach a Master’s course: Prof ⊓ ∃teaches.MCourse
∙ Taught by: teaches−

Note: set of available constructors depends on the particular DL!

6/42

dl basics

Building blocks of DLs:

∙ concept names (unary predicates, classes) Prof, Course

∙ role names (binary predicates, properties) teaches

∙ individual names (constants) marie, inf100

Build complex concepts and roles using constructors. For example:

∙ Non-professors: ¬Prof
∙ Profs who teach a Master’s course: Prof ⊓ ∃teaches.MCourse
∙ Taught by: teaches−

Note: set of available constructors depends on the particular DL!

6/42

dl knowledge bases

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

∙ finite set of concept assertions A(a) and role assertions r(a,b)
∙ example assertions: Prof(marie), teaches(marie, inf100)

TBox contains general knowledge about the domain of interest

∙ finite set of axioms (types of axioms depends on the DL)
∙ concept inclusions most common form of axiom
∙ C ⊑ D, with C,D complex concepts
∙ intuitive meaning: “everything that is a C is also a D”

∙ examples on later slides

7/42

dl knowledge bases

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

∙ finite set of concept assertions A(a) and role assertions r(a,b)
∙ example assertions: Prof(marie), teaches(marie, inf100)

TBox contains general knowledge about the domain of interest

∙ finite set of axioms (types of axioms depends on the DL)
∙ concept inclusions most common form of axiom
∙ C ⊑ D, with C,D complex concepts
∙ intuitive meaning: “everything that is a C is also a D”

∙ examples on later slides

7/42

dl semantics

Interpretation I (“possible world”) (like FO logic semantics)

∙ domain of objects ∆I (possibly infinite set)

∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

∙ extend ·I to complex concepts and roles, for example:
∙ (C ⊓ D)I = CI ∩ DI (∃r.C)I = {d1 | exists (d1,d2) ∈ rI with d2 ∈ CI}

Satisfaction in an interpretation
I satisfies B(a) ⇔ aI ∈ BI I satisfies C ⊑ D ⇔ CI ⊆ DI

Model of a KB K = interpretation that satisfies all statements in K

K entails α (written K |= α) = every model I of K satisfies α

8/42

dl semantics

Interpretation I (“possible world”) (like FO logic semantics)

∙ domain of objects ∆I (possibly infinite set)

∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

∙ extend ·I to complex concepts and roles, for example:
∙ (C ⊓ D)I = CI ∩ DI (∃r.C)I = {d1 | exists (d1,d2) ∈ rI with d2 ∈ CI}

Satisfaction in an interpretation
I satisfies B(a) ⇔ aI ∈ BI I satisfies C ⊑ D ⇔ CI ⊆ DI

Model of a KB K = interpretation that satisfies all statements in K

K entails α (written K |= α) = every model I of K satisfies α

8/42

dl semantics

Interpretation I (“possible world”) (like FO logic semantics)

∙ domain of objects ∆I (possibly infinite set)

∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

∙ extend ·I to complex concepts and roles, for example:
∙ (C ⊓ D)I = CI ∩ DI (∃r.C)I = {d1 | exists (d1,d2) ∈ rI with d2 ∈ CI}

Satisfaction in an interpretation
I satisfies B(a) ⇔ aI ∈ BI I satisfies C ⊑ D ⇔ CI ⊆ DI

Model of a KB K = interpretation that satisfies all statements in K

K entails α (written K |= α) = every model I of K satisfies α
8/42

description logic alc

In ALC, we have the following concept constructors:
∙ top concept ⊤ (acts as a “wildcard”, denotes set of all things)
∙ bottom concept ⊥ (denotes empty set)
∙ conjunction (⊓), disjunction (⊔), negation (¬)
∙ restricted forms of existential and universal quantification (∃, ∀)

Complex concepts are formed as follows:

C,D := ⊤ | ⊥ | A | ¬C | C ⊓ D | C ⊔ D | ∃r.C | ∀r.C

where A is a concept name, r a role name.

ALC TBox: set of concept inclusions C ⊑ D

9/42

description logic alc

In ALC, we have the following concept constructors:
∙ top concept ⊤ (acts as a “wildcard”, denotes set of all things)
∙ bottom concept ⊥ (denotes empty set)
∙ conjunction (⊓), disjunction (⊔), negation (¬)
∙ restricted forms of existential and universal quantification (∃, ∀)

Complex concepts are formed as follows:

C,D := ⊤ | ⊥ | A | ¬C | C ⊓ D | C ⊔ D | ∃r.C | ∀r.C

where A is a concept name, r a role name.

ALC TBox: set of concept inclusions C ⊑ D

9/42

examples of tbox axioms

Professors and MCFs are disjoint classes of faculty

Prof ⊑ Faculty Mcf ⊑ Faculty Prof ⊑ ¬Mcf

Every Master’s student is supervised by some faculty member

MStudent ⊑ ∃supervisedBy.Faculty

Master’s students are students who only take Master-level courses

MStudent ⊑ Student ⊓ ∀takesCourse.MCourse

FO translation:
∀x (MStudent(x) → (Student(x) ∧ ∀y takesCourse(x, y) → MCourse(y))

10/42

description logic el

In EL, complex concepts are constructed as follows:

C,D := ⊤ | A | C ⊓ D | ∃r.C

EL TBox = set of inclusions C ⊑ D, with C,D as above

Advantage w.r.t. ALC: reasoning much simpler (PTIME vs. EXPTIME)

Despite lower expressivity, EL very useful in practice
∙ used for large-scale biomedical ontologies (example: SNOMED)
∙ importance witnessed by OWL 2 EL profile

11/42

description logic el

In EL, complex concepts are constructed as follows:

C,D := ⊤ | A | C ⊓ D | ∃r.C

EL TBox = set of inclusions C ⊑ D, with C,D as above

Advantage w.r.t. ALC: reasoning much simpler (PTIME vs. EXPTIME)

Despite lower expressivity, EL very useful in practice
∙ used for large-scale biomedical ontologies (example: SNOMED)
∙ importance witnessed by OWL 2 EL profile

11/42

description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL 2 QL profile).

DL-LiteR TBoxes contain two types of axioms:

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions S1 ⊑ S2, S1 ⊑ ¬S2

where B := A | ∃S S := r | r−

Some DL-LiteR axioms:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Teaches inverse of taughtBy:
teaches ⊑ taughtBy−, teaches− ⊑ taughtBy

12/42

description logic dl-lite

We present the dialect DL-LiteR (which underlies OWL 2 QL profile).

DL-LiteR TBoxes contain two types of axioms:

∙ concept inclusions B1 ⊑ B2, B1 ⊑ ¬B2
∙ role inclusions S1 ⊑ S2, S1 ⊑ ¬S2

where B := A | ∃S S := r | r−

Some DL-LiteR axioms:
∙ Every professor teaches something: Prof ⊑ ∃teaches
∙ Everything that is taught is a course: ∃teaches− ⊑ Course
∙ Teaches inverse of taughtBy:
teaches ⊑ taughtBy−, teaches− ⊑ taughtBy

12/42

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)
(find all faculty members that teach something)

Ontology-mediated query (OMQ):
pair (T ,q) with T a TBox and q a query (IQ / CQ)

13/42

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)
(find all faculty members that teach something)

Ontology-mediated query (OMQ):
pair (T ,q) with T a TBox and q a query (IQ / CQ)

13/42

query languages

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ∼ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

∃y. Faculty(x) ∧ teaches(x, y)
(find all faculty members that teach something)

Ontology-mediated query (OMQ):
pair (T ,q) with T a TBox and q a query (IQ / CQ)

13/42

query answering: database vs ontology settings

Answering CQs in database setting

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

database D + query q ⇝ set of answers ans(q,D)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

model I of KB (T ,A) + query q ⇝ set of answers ans(q, I)

Question: how to combine the answers from different models?

14/42

query answering: database vs ontology settings

Answering CQs in database setting

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

database D + query q ⇝ set of answers ans(q,D)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

model I of KB (T ,A) + query q ⇝ set of answers ans(q, I)

Question: how to combine the answers from different models?

14/42

query answering: database vs ontology settings

Answering CQs in database setting

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

database D + query q ⇝ set of answers ans(q,D)

Answering CQs in the presence of a TBox (ontology)

TF T
F

T

CQ

P

D

D
dataset

map into

homomorphism ax

TF T
F

T

CQ

P

D

D models

map into

homomorphismx

TF

S

A
R

U

U

y

y

c

(data + ontology)
of KB

model I of KB (T ,A) + query q ⇝ set of answers ans(q, I)

Question: how to combine the answers from different models?
14/42

omqa, certain answers, and canonical models

Certain answers:
∙ tuples of inds a⃗ such that a⃗ ∈ ans(q, I) for every model I of (T ,A)

∙ corresponds to a form of entailment, we’ll write T ,A |= q(a⃗)

Ontology-mediated query answering: computing certain answers

For Horn DLs (no form of disjunction) like EL and DL-LiteR:
enough to consider a single canonical model
∙ idea: exhaustively apply TBox axioms to ABox
∙ possibly infinite (A ⊑ ∃r.A)
∙ forest-shaped (ABox + new tree structures)
∙ give correct answer to all CQs

15/42

omqa, certain answers, and canonical models

Certain answers:
∙ tuples of inds a⃗ such that a⃗ ∈ ans(q, I) for every model I of (T ,A)

∙ corresponds to a form of entailment, we’ll write T ,A |= q(a⃗)

Ontology-mediated query answering: computing certain answers

For Horn DLs (no form of disjunction) like EL and DL-LiteR:
enough to consider a single canonical model
∙ idea: exhaustively apply TBox axioms to ABox
∙ possibly infinite (A ⊑ ∃r.A)
∙ forest-shaped (ABox + new tree structures)
∙ give correct answer to all CQs

15/42

omqa, certain answers, and canonical models

Certain answers:
∙ tuples of inds a⃗ such that a⃗ ∈ ans(q, I) for every model I of (T ,A)

∙ corresponds to a form of entailment, we’ll write T ,A |= q(a⃗)

Ontology-mediated query answering: computing certain answers

For Horn DLs (no form of disjunction) like EL and DL-LiteR:
enough to consider a single canonical model
∙ idea: exhaustively apply TBox axioms to ABox
∙ possibly infinite (A ⊑ ∃r.A)
∙ forest-shaped (ABox + new tree structures)
∙ give correct answer to all CQs

15/42

complexity of omqa

OMQA viewed as a decision problem (yes-or-no question):
Problem: Q answering in L (Q a query language, L a DL)
Input: An n-ary query q ∈ Q, an ABox A, a L-TBox T ,

and a tuple a⃗ ∈ Ind(A)n

Question: Does T ,A |= q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox (data) typically much larger than rest of input

data complexity ≤ combined complexity

Note: use |A| to denote size of A (similarly for |T |, |q|, etc.)

16/42

complexity of omqa

OMQA viewed as a decision problem (yes-or-no question):
Problem: Q answering in L (Q a query language, L a DL)
Input: An n-ary query q ∈ Q, an ABox A, a L-TBox T ,

and a tuple a⃗ ∈ Ind(A)n

Question: Does T ,A |= q(a⃗)?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox (data) typically much larger than rest of input

data complexity ≤ combined complexity

Note: use |A| to denote size of A (similarly for |T |, |q|, etc.)
16/42

query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: OMQ (T , q)⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of (T ,q) iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Can also consider Datalog rewritings, defined analogously

17/42

query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: OMQ (T , q)⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of (T ,q) iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Can also consider Datalog rewritings, defined analogously

17/42

query rewriting

Idea: reduce OMQA to database query evaluation

∙ rewriting step: OMQ (T , q)⇝ first-order (SQL) query q′

∙ evaluation step: evaluate query q′ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

∙ FO query q′ is an FO-rewriting of (T ,q) iff for every ABox A:

T ,A |= q(a⃗) ⇔ DBA |= q′(a⃗)

Informally: evaluating q′ over A (viewed as DB) gives correct result

Can also consider Datalog rewritings, defined analogously
17/42

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has an FO-rewriting

Example:

TBox T = {Prof ⊑ Faculty Mcf ⊑ Faculty CR ⊑ Faculty DR ⊑ Faculty
Prof ⊑ ∃teaches Mcf ⊑ ∃teaches }

Query q0 = ∃y Faculty(x) ∧ teaches(x, y)

The following query is an FO-rewriting of (T ,q0):

q0 ∨ Prof(x) ∨ Mcf(x)
∨ ∃y CR(x) ∧ teaches(x, y) ∨ ∃yDR(x) ∧ teaches(x, y)

Existence of FO-rewritings⇒ low data complexity (AC0 ⊊ PTIME)

18/42

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has an FO-rewriting

Example:

TBox T = {Prof ⊑ Faculty Mcf ⊑ Faculty CR ⊑ Faculty DR ⊑ Faculty
Prof ⊑ ∃teaches Mcf ⊑ ∃teaches }

Query q0 = ∃y Faculty(x) ∧ teaches(x, y)

The following query is an FO-rewriting of (T ,q0):

q0 ∨ Prof(x) ∨ Mcf(x)
∨ ∃y CR(x) ∧ teaches(x, y) ∨ ∃yDR(x) ∧ teaches(x, y)

Existence of FO-rewritings⇒ low data complexity (AC0 ⊊ PTIME)

18/42

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has an FO-rewriting

Example:

TBox T = {Prof ⊑ Faculty Mcf ⊑ Faculty CR ⊑ Faculty DR ⊑ Faculty
Prof ⊑ ∃teaches Mcf ⊑ ∃teaches }

Query q0 = ∃y Faculty(x) ∧ teaches(x, y)

The following query is an FO-rewriting of (T ,q0):

q0 ∨ Prof(x) ∨ Mcf(x)
∨ ∃y CR(x) ∧ teaches(x, y) ∨ ∃yDR(x) ∧ teaches(x, y)

Existence of FO-rewritings⇒ low data complexity (AC0 ⊊ PTIME)

18/42

query rewriting in dl-lite

Good news: every CQ and DL-LiteR ontology has an FO-rewriting

Example:

TBox T = {Prof ⊑ Faculty Mcf ⊑ Faculty CR ⊑ Faculty DR ⊑ Faculty
Prof ⊑ ∃teaches Mcf ⊑ ∃teaches }

Query q0 = ∃y Faculty(x) ∧ teaches(x, y)

The following query is an FO-rewriting of (T ,q0):

q0 ∨ Prof(x) ∨ Mcf(x)
∨ ∃y CR(x) ∧ teaches(x, y) ∨ ∃yDR(x) ∧ teaches(x, y)

Existence of FO-rewritings⇒ low data complexity (AC0 ⊊ PTIME)

18/42

what about el?

EL : ⊓, ∃r.C

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r c

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ∼ function-free Horn clauses

∙ Datalog program Π: r(x, y) ∧ A(x) → A(y) A(x) → goal(x)
∙ T ,A |= A(c) iff can derive goal(c) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

19/42

what about el?

EL : ⊓, ∃r.C

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r c

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ∼ function-free Horn clauses

∙ Datalog program Π: r(x, y) ∧ A(x) → A(y) A(x) → goal(x)
∙ T ,A |= A(c) iff can derive goal(c) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

19/42

what about el?

EL : ⊓, ∃r.C

In EL, FO-rewritings need not exist:
∙ no FO-rewriting of A(x) w.r.t. {∃r.A ⊑ A}

Hardness

r r r c

Looks harmless? Cancelation is main source of complexity:

On these steps, one can simulate a Turing machine

, 9r.> v A

A(x) _ 9y r(x, y)

TBox: 9r.A v A Query: A(x)

FO-rewriting exists since 9r.> v A cancels non-locality:

finding cycles in TBox is trivial (pure syntax)

cycle cancelations can still occur after exponentially many steps

A

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ∼ function-free Horn clauses

∙ Datalog program Π: r(x, y) ∧ A(x) → A(y) A(x) → goal(x)
∙ T ,A |= A(c) iff can derive goal(c) from A using Π

Can pass on rewriting to Datalog engine

Datalog rewriting⇒ PTIME data complexity for CQ answering

19/42

what about alc?

ALC : ⊓,⊔,⊓,∃r.C, ∀r.C

Neither FO nor Datalog rewritings need exist

Encoding of non-3-colourability:

TBox axioms:
∙ ⊤ ⊑ R ⊔ G ⊔ B
∙ B ⊓ ∃edge.B ⊑ clash (same for R,G)

Graph is 3-colourable⇔ Boolean query ∃x.clash(x) not entailed

CQ answering has coNP data complexity

20/42

understanding query rewriting

Query rewriting:
data-independent reduction of OMQA to DB query evaluation

To gain better understanding of query rewriting,
we consider the following natural questions:

1. Size of rewritings DL-Lite
∙ How large are the rewritten queries?

2. Existence of rewritings beyond DL-Lite
∙ When is query rewriting applicable?

21/42

understanding query rewriting

Query rewriting:
data-independent reduction of OMQA to DB query evaluation

To gain better understanding of query rewriting,
we consider the following natural questions:

1. Size of rewritings DL-Lite
∙ How large are the rewritten queries?

2. Existence of rewritings beyond DL-Lite
∙ When is query rewriting applicable?

21/42

size of rewritings

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs = ∨ of CQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

23/42

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs = ∨ of CQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

23/42

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs = ∨ of CQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

23/42

query rewriting for dl-lite ontologies

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce unions of conjunctive queries (UCQs = ∨ of CQs)

Experiments showed that such rewritings can be huge!

∙ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

∙ Query: A01 (x) ∧ . . . ∧ A0n(x)
∙ Ontology: A11 ⊑ A01 A12 ⊑ A02 . . . A1n ⊑ A0n
∙ Rewriting:

∨
(i1,...,in)∈{0,1} A

i1
1 (x) ∧ A

i1
1 (x) ∧ . . . ∧ Ai11 (x)

But: simple polysize FO-rewriting does exist!
∧n
i=1(A0i (x) ∨ A

1
i (x))

23/42

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

q1(x, y),q2(x),q2(y) → goal(x, y)
r(x, y) → q1(x, y) A(x) → q2(x)
s(y, x) → q1(x, y) B(x),p(x, z) → q2(x)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

24/42

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

q1(x, y),q2(x),q2(y) → goal(x, y)
r(x, y) → q1(x, y) A(x) → q2(x)
s(y, x) → q1(x, y) B(x),p(x, z) → q2(x)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

24/42

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

q1(x, y),q2(x),q2(y) → goal(x, y)
r(x, y) → q1(x, y) A(x) → q2(x)
s(y, x) → q1(x, y) B(x),p(x, z) → q2(x)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

24/42

different forms of rewritings

PE-rewritings: positive existential queries (only ∃, ∧, ∨)

(r(x, y)∨ s(y, x))∧ (A(x)∨ (B(x)∧∃z p(x, z)))∧ (A(y)∨ (B(y)∧∃z p(y, z)))

NDL-rewritings: non-recursive Datalog queries

q1(x, y),q2(x),q2(y) → goal(x, y)
r(x, y) → q1(x, y) A(x) → q2(x)
s(y, x) → q1(x, y) B(x),p(x, z) → q2(x)

FO-rewritings: first-order queries (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO?
Do we get polysize rewritings?

24/42

first negative results [kkpz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs qn and DL-LiteR TBoxes Tn such that

∙ PE- and NDL-rewritings of (Tn,qn) exponential in |qn|+ |Tn|
∙ FO-rewritings of (Tn,qn) superpolynomial unless NP/poly ⊆ NC1

Key proof step: reduce CNF satisfiability to CQ answering in DL-LiteR

∙ TBox generates full binary tree, leaves represent prop. valuations
∙ depth of tree = number of variables

∙ tree-shaped query selects valuation, checks clauses are satisfied
∙ number of leaves / branches in query = number of clauses

25/42

first negative results [kkpz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs qn and DL-LiteR TBoxes Tn such that

∙ PE- and NDL-rewritings of (Tn,qn) exponential in |qn|+ |Tn|
∙ FO-rewritings of (Tn,qn) superpolynomial unless NP/poly ⊆ NC1

Key proof step: reduce CNF satisfiability to CQ answering in DL-LiteR

∙ TBox generates full binary tree, leaves represent prop. valuations
∙ depth of tree = number of variables

∙ tree-shaped query selects valuation, checks clauses are satisfied
∙ number of leaves / branches in query = number of clauses

25/42

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model

∙ T has finite depth↔ applying axioms in T always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

26/42

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model

∙ T has finite depth↔ applying axioms in T always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?

Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

26/42

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model

∙ T has finite depth↔ applying axioms in T always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

26/42

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model

∙ T has finite depth↔ applying axioms in T always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries

26/42

restricting depth of the tbox [kkpz14]

Depth of TBox =
maximum depth of generated trees in canonical model

∙ T has finite depth↔ applying axioms in T always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

Depth 2 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NP/poly⊆ NC1

Depth 1 TBoxes:
∙ no polysize PE- or NDL-rewritings
∙ no polysize FO-rewritings unless NL/poly⊆ NC1

∙ but: polysize PE-rewritings for tree-shaped queries
26/42

map of results so far

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

po
ly
FO

⇔
NP

/
p

ol
y
⊆

NC
1no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

?

27/42

completing the landscape [bkp15], [bkkpz18]

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

po
ly
FO

⇔
NP

/
p

ol
y
⊆

NC
1

≥
≤

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
poly FO unless NL/poly ⊆ NC1

28/42

completing the landscape [bkp15], [bkkpz18]

Strong negative result for PE-rewritings
∙ no polysize PE-rewritings for depth 2 TBoxes + linear CQs

Conditional negative results for FO-rewritings
∙ polysize FO-rewritings exist iff
∙ SAC1⊆ NC1 bounded depth + bounded treewidth CQs
∙ NL/poly⊆ NC1 bounded-leaf tree-shaped CQs

Positive results for NDL-rewritings
∙ bounded depth TBox + bounded treewidth CQs
∙ bounded-leaf tree-shaped CQs (+ arbitrary TBox)

Takeaway: NDL good target language for rewritings
29/42

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing Reachn

30/42

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing Reachn

30/42

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t

No family of polysize mon. Boolean formulas computing Reachn

30/42

brief glimpse at proof techniques (1)

Standard computational complexity not the right tool
∙ can be used to show no polytime-computable rewriting
∙ ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity
∙ branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

∙ recall k-ary Boolean function maps tuples from {0, 1}k to {0, 1}

Example: function Reachn
∙ input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

∙ output: 1 iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing Reachn

30/42

brief glimpse at proof techniques (2)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas (∧,∨)
NDL-rewritings monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings Boolean formulas (∧,∨,¬)

Associate Boolean functions with OMQ (T ,q)

‘Lower bound’ function f LBq,T ⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f LBq,T

‘Upper bound’ function f UBq,T ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f UBq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
∙ which functions expressible as f LBq,T / f UBq,T for given OMQ class?
∙ intermediate computational model: hypergraph programs

31/42

brief glimpse at proof techniques (2)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas (∧,∨)
NDL-rewritings monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings Boolean formulas (∧,∨,¬)

Associate Boolean functions with OMQ (T ,q)

‘Lower bound’ function f LBq,T ⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f LBq,T

‘Upper bound’ function f UBq,T ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f UBq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
∙ which functions expressible as f LBq,T / f UBq,T for given OMQ class?
∙ intermediate computational model: hypergraph programs

31/42

brief glimpse at proof techniques (2)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas (∧,∨)
NDL-rewritings monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings Boolean formulas (∧,∨,¬)

Associate Boolean functions with OMQ (T ,q)

‘Lower bound’ function f LBq,T ⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f LBq,T

‘Upper bound’ function f UBq,T ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f UBq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
∙ which functions expressible as f LBq,T / f UBq,T for given OMQ class?
∙ intermediate computational model: hypergraph programs

31/42

brief glimpse at proof techniques (2)

Types of rewritings⇝ ways of representing Boolean functions

PE-rewritings monotone Boolean formulas (∧,∨)
NDL-rewritings monotone Boolean circuits (∨- and ∧-gates)
FO-rewritings Boolean formulas (∧,∨,¬)

Associate Boolean functions with OMQ (T ,q)

‘Lower bound’ function f LBq,T ⇒ lower bounds on rewriting size
∙ transform rewriting of q, T into formula / circuit that computes f LBq,T

‘Upper bound’ function f UBq,T ⇒ upper bounds on rewriting size
∙ transform formula / circuit that computes f UBq,T into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
∙ which functions expressible as f LBq,T / f UBq,T for given OMQ class?
∙ intermediate computational model: hypergraph programs 31/42

comparing succinctness & complexity landscapes

Size of rewritings Combined complexity of OMQA

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

(n
o
po
ly
FO

un
le
ss

NP
/

p
ol

y
⊆

NC
1)

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

NL-complete

LOGCFL-complete

NP
-c
om

pl
et
e

NP-complete

LO
GC
FL
-c

polysize NDL-rewritings ∼ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?

32/42

comparing succinctness & complexity landscapes

Size of rewritings Combined complexity of OMQA

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

no poly PE but poly NDL
(poly FO⇔ NL/poly ⊆ NC1)

no poly PE but poly NDL
(poly FO⇔ SAC1 ⊆ NC1)

(n
o
po
ly
FO

un
le
ss

NP
/

p
ol

y
⊆

NC
1)

no polysize PE or NDL

poly
PE,
NDL,
& FO

no poly PE but poly NDL
no poly PE but poly NDL
no poly FO unless NL/poly ⊆ NC1

1 2 3 . . . d arb

2

. . .

ℓ

trees

tw 2

. . .

btw

arb

TBox depth

Nu
m
be
ro
fl
ea
ve
s

Tr
ee
w
id
th

NL-complete

LOGCFL-complete

NP
-c
om

pl
et
e

NP-complete

LO
GC
FL
-c

polysize NDL-rewritings ∼ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?

32/42

optimal ndl-rewritings [bkkprz17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:
∙ rewriting can be constructed by LC transducer
∙ evaluating the rewriting can be done in C
with C ∈ {NL, LOGCFL} the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):
∙ compared with other NDL-rewritings (Clipper, Rapid, Presto)
∙ our rewritings grow linearly with increasing query size
∙ other systems produce rewritings that grow exponentially

33/42

optimal ndl-rewritings [bkkprz17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:
∙ rewriting can be constructed by LC transducer
∙ evaluating the rewriting can be done in C
with C ∈ {NL, LOGCFL} the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):
∙ compared with other NDL-rewritings (Clipper, Rapid, Presto)
∙ our rewritings grow linearly with increasing query size
∙ other systems produce rewritings that grow exponentially

33/42

existence of rewritings

query rewriting beyond dl-lite

We have seen that:
∙ for EL ontologies, FO-rewritings need not exist
∙ for ALC ontologies, FO- and Datalog rewritings may not exist

But these are worst-case results
∙ only say that some OMQ that does not have a rewriting
∙ possible that rewritings exist for many OMQs encountered
in practice

To extend the applicability of query rewriting beyond DL-Lite:
∙ devise ways of identifying ‘good cases’
∙ construct rewritings when they exist

35/42

deciding existence of rewritings

Use (L,Q) to denote set of OMQs (T ,q) where:
∙ T is an L-TBox
∙ q is a query from Q Q ∈ {IQ, CQ}

For example: (EL, CQ), (ALC, IQ)

FO-rewritability in (L,Q)

∙ Input: OMQ (T ,q) from (L,Q)

∙ Problem: decide whether (T ,q) has an FO-rewriting

Datalog-rewritability decision problem can be defined analogously

36/42

fo-rewritability in el [blw13] [bclw16]

EL : ⊓, ∃r.C

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

37/42

fo-rewritability in el [blw13] [bclw16]

EL : ⊓, ∃r.C

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

37/42

fo-rewritability in el [blw13] [bclw16]

EL : ⊓, ∃r.C

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

37/42

fo-rewritability in el [blw13] [bclw16]

EL : ⊓, ∃r.C

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

37/42

fo-rewritability in el [blw13] [bclw16]

EL : ⊓, ∃r.C

FO-rewritability is EXPTIME-complete in (EL, IQ) and (EL, CQ)

Characterization of non-existence of FO-rewriting
OMQ (T ,A(x)) is not FO-rewritable iff there exist tree-shaped ABoxes

Theorem [BienvenuL_WolterIJCAI13]

Characterizing Non-Rewritability

A1 A2 A3 A4

· · ·
, but T ,A0

i 6|= A(a0)

1 2 3 4A0
4

A0
3

A0
2A0

1

such that for all i � 1:

T ,Ai |= A(a0)

Unraveling tolerance enables characterization of FO-rewritability

there are ⌃-ABoxes

OMQ (T ,⌃, A(x)) in (ELI,AQ) is not FO-rewritable iff

a0 a0 a0 a0

such that for all i ≥ 1: T ,Ai |= A(a0) and T ,A′
i ̸|= A(a0)

Pumping argument: enough to find ABox of particular finite size k0
∙ desired ABox Ak0 exists⇒ can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well
37/42

computing fo-rewritings in el [hlsw15], [hl17]

Idea for IQs: use existing backwards-chaining rewriting procedure
∙ if FO-rewriting does exist, terminates
∙ to ensure termination in general: use characterization result

To make practical: decomposed algorithm
∙ allows for structure sharing
∙ produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are very encouraging:
∙ terminates quickly, produced rewritings are typically small
∙ suggests that in practice FO-rewritings do exist for majority of IQs

Recently extended to handle CQs with promising results

38/42

rewritability for (alc, iq) [bclw13] [bclw14]

ALC : ¬,⊔,⊓,∃r.C, ∀r.C

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both
NEXPTIME-complete.

Upper bound: connection to constraint satisfaction problems (CSPs)

∙ CSP(B): decide if homomorphism from input structure D into B

∙ (Boolean) OMQs in (ALC, IQ) ∼ (complement of) CSPs
∙ exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

∙ use NP upper bounds for latter problems [LLT07] [FKKMMW09]

39/42

rewritability for (alc, iq) [bclw13] [bclw14]

ALC : ¬,⊔,⊓,∃r.C, ∀r.C

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both
NEXPTIME-complete.

Upper bound: connection to constraint satisfaction problems (CSPs)

∙ CSP(B): decide if homomorphism from input structure D into B

∙ (Boolean) OMQs in (ALC, IQ) ∼ (complement of) CSPs
∙ exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

∙ use NP upper bounds for latter problems [LLT07] [FKKMMW09]

39/42

fo-rewritability for (alc, ucq) [fkl17]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog [BCLW13] [BCLW14]

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

40/42

fo-rewritability for (alc, ucq) [fkl17]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog [BCLW13] [BCLW14]

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

40/42

fo-rewritability for (alc, ucq) [fkl17]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog [BCLW13] [BCLW14]

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

40/42

fo-rewritability for (alc, ucq) [fkl17]

FO-rewritability of (ALC,UCQ) is 2NExptime-complete

Instead of CSP, uses MMSNP (monotone monadic strict NP):
fragment of monadic second-order logic that generalizes CSP

OMQs from (ALC,UCQ) ∼ complement of MMSNP formulas
∼ monadic disjunctive Datalog [BCLW13] [BCLW14]

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NExptime-complete

40/42

concluding remarks

conclusion

Ontology-mediated query answering:
∙ new paradigm for intelligent information systems
∙ offers many advantages, but also computational challenges

Query rewriting promising algorithmic approach

Many interesting problems related to OMQA and query rewriting:
∙ succinctness of rewritings (Boolean functions, circuit complexity)
∙ existence of FO and Datalog rewritings (automata, CSP / MMSNP)
∙ other tools: parameterized complexity, word rewriting

Active area with lots left to explore!

42/42

Questions?

Joint work with:

Balder ten Cate, Peter Hansen, Carsten Lutz, Stanislav Kikot,

Roman Kontchakov, Vladimir Podolskii, Vladislav Ryzhikov,

Frank Wolter, and Michael Zakharyaschev

43/42

references: succinctness & optimality of rewritings

[KKPZ12] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Exponential Lower
Bounds and Separation for Query Rewriting. 39th International Colloquium on
Automata, Languages, and Programming (ICALP’12), 2012.

[GS12] G. Gottlob and T. Schwentick: Rewriting Ontological Queries into Small
Nonrecursive Datalog Programs. 13th International Conference on the Principles of
Knowledge Representation and Reasoning (KR’12), 2012.

[GKKPSZ14] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M.
Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial
Intelligence (AIJ), 2014.

[KKPZ14] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: On the
Succinctness of Query Rewriting over Shallow Ontologies. 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’14), 2014.

44/42

references: succinctness & optimality of rewritings

[BKP15] M. Bienvenu, S. Kikot, V. Podolskii: Tree-like Queries in OWL 2 QL: Succinctness
and Complexity Results. 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’15), 2015.

[BKKPRZ17] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M.
Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and
Bounded Treewidth Queries. Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS’17), 2017.

[BKKPZ18] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev:
Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via
Circuit Complexity. Journal of the ACM (JACM), 2018.

45/42

references: existence of rewritings

[BCLW13] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. 32nd International Conference
on the Principles of Database Systems (PODS’13), 2013.

[BLW13] M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of Atomic Queries
in Horn Description Logics. 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), 2013.

[BCLW14] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. Transactions on Database
Systems (TODS), 2014.

[KNG14] M. Kaminski, Y. Nenov, and B. Cuenca Grau: Datalog Rewritability of Disjunctive
Datalog Programs and its Applications to Ontology Reasoning. 28th AAAI Conference
on Artificial Intelligence (AAAI’14), 2014.

46/42

references: existence of rewritings

[HLSW15] P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting in the
Description Logic EL and Beyond. 24th International Joint Conference on Artificial
Intelligence (IJCAI’15), 2015.

[BL16] P. Bourhis and C. Lutz: Containment in Monadic Disjunctive Datalog, MMSNP, and
Expressive Description Logics. 15th International Conference on the Principles of
Knowledge Representation and Reasoning (KR’16), 2016.

[BCLW16] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First Order-Rewritability and
Containment of Conjunctive Queries in Horn Description Logics. 25th International
Joint Conference on Artificial Intelligence (IJCAI’16), 2016.

[FKL17] C. Feier, A. Kuusisto, and C. Lutz: Rewritability in Monadic Disjunctive Datalog,
MMSNP, and Expressive Description Logics. 20th International Conference on Database
Theory (ICDT’17), 2017.

[HL17] P. Hansen and C. Lutz: Computing FO-Rewritings in EL in Practice: from Atomic
to Conjunctive Queries. 16th International Semantic Web Conference (ISWC’17), 2017.

47/42

references: definability of csps

[LLT07] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science (LMCS), 2007.

[FKKMMW09] R. Freese, M. Kozik, A. Krokhin, M. Maroti, R. Mckenzie, and R. Willard. On
maltsev conditions associated with omitting certain types of local structures. Available
at: http://www.math.hawaii. edu/∼ralph/Classes/619/OmittingTypesMaltsev.pdf, 2009.

[CL17] H. Chen and B. Larose. Asking the Metaquestions in Constraint Tractability. ACM
Transactions on Computation Theory (TOCT) 9(3), pages 1-27, 2017.

48/42

	Introduction to OMQA &Query Rewriting
	Size of Rewritings
	Existence of Rewritings
	Concluding Remarks
	Appendix

