ONTOLOGY-MEDIATED QUERY ANSWERING

Harnessing knowledge to get more from data

Meghyn Bienvenu (LaBRI - CNRS & University of Bordeaux)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

patient data "Melanie has listeriosis"

"Paul has Lyme disease"

medical knowledge

"Listeriosis & Lyme disease "Find all patients with are bacterial infections"

expected answers: Melanie, Paul

Why use an ontology?

- extend the vocabulary (making queries easier to formulate)
- · provide a unified view of multiple data sources
- · obtain more answers to queries (by exploiting domain knowledge)

Two main objectives:

- · give a brief introduction to OMQA
- $\cdot\,$ show connections between OMQA and theoretical CS

Structure of the talk:

- · Introductory material
 - \cdot description logic (DL) ontologies, OMQA problem, query rewriting
- · Understanding query rewriting
 - $\cdot\,$ natural questions related to size and existence of rewritings
 - · links to circuit complexity, automata, CSP

INTRODUCTION TO OMQA & QUERY REWRITING

Ontologies typically described using logic-based formalisms

In this talk: ontologies formulated in description logics (DLs)

- family of decidable fragments of first-order logic (FO)
- · range from fairly simple to highly expressive
- $\cdot\,$ complexity of query answering well understood
- $\cdot\,$ lots of practical work on algorithms and implementations
- · basis for OWL web ontology language (W3C standard)

Today, we'll mainly focus on three particular DLs:

 $\cdot \mathcal{ALC}, \mathcal{EL}, \mathsf{DL-Lite}_R$

Building blocks of DLs:

- **concept names** (unary predicates, classes)
- · role names (binary predicates, properties)
- · individual names (constants)

Prof, Course teaches

marie, inf100

Building blocks of DLs:

- concept names (unary predicates, classes) Prof, Course
- role names (binary predicates, properties) teaches
- · individual names (constants)

marie, inf100

Build complex concepts and roles using constructors. For example:

- · Non-professors: ¬Prof
- · Profs who teach a Master's course: Prof □ ∃teaches.MCourse
- · Taught by: teaches⁻

Note: set of available constructors depends on the particular DL!

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- example assertions: Prof(marie), teaches(marie, inf100)

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- example assertions: Prof(marie), teaches(marie, inf100)

TBox contains general knowledge about the domain of interest

- \cdot finite set of **axioms** (types of axioms depends on the DL)
- · concept inclusions most common form of axiom
 - · $C \sqsubseteq D$, with C, D complex concepts
 - intuitive meaning: "everything that is a C is also a D"
- $\cdot\,$ examples on later slides

DL SEMANTICS

Interpretation *I* ("possible world")

(like FO logic semantics)

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - \cdot concept name $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

DL SEMANTICS

Interpretation *I* ("possible world")

(like FO logic semantics)

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - \cdot concept name $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- $\cdot \,$ extend $\cdot^{\mathcal{I}}$ to complex concepts and roles, for example:
 - $\cdot (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad (\exists r.C)^{\mathcal{I}} = \{d_1 \mid \text{ exists } (d_1, d_2) \in r^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$

DL SEMANTICS

Interpretation *I* ("possible world")

- · **domain of objects** $\Delta^{\mathcal{I}}$ (possibly infinite set)
- \cdot interpretation function $\cdot^{\mathcal{I}}$ that maps
 - \cdot concept name $A \rightsquigarrow$ set of objects $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - · role name $r \rightsquigarrow$ set of pairs of objects $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - · individual name $a \rightsquigarrow \text{object } a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- $\cdot \,$ extend $\cdot^{\mathcal{I}}$ to complex concepts and roles, for example:
 - $\cdot (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad (\exists r.C)^{\mathcal{I}} = \{d_1 \mid \text{ exists } (d_1, d_2) \in r^{\mathcal{I}} \text{ with } d_2 \in C^{\mathcal{I}}\}$

Satisfaction in an interpretation

 \mathcal{I} satisfies $B(a) \Leftrightarrow a^{\mathcal{I}} \in B^{\mathcal{I}}$ \mathcal{I} satisfies $C \sqsubseteq D \Leftrightarrow C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Model of a KB \mathcal{K} = interpretation that satisfies all statements in \mathcal{K}

 \mathcal{K} entails α (written $\mathcal{K} \models \alpha$) = every model \mathcal{I} of \mathcal{K} satisfies α

In \mathcal{ALC} , we have the following concept constructors:

- · top concept \top (acts as a "wildcard", denotes set of all things)
- · **bottom concept** \perp (denotes empty set)
- · conjunction (\Box), disjunction (\Box), negation (\neg)
- · restricted forms of existential and universal quantification (\exists, \forall)

Complex concepts are formed as follows:

$C, D := \top \mid \bot \mid A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists r.C \mid \forall r.C$

where A is a concept name, r a role name.

In \mathcal{ALC} , we have the following concept constructors:

- · top concept \top (acts as a "wildcard", denotes set of all things)
- · **bottom concept** \perp (denotes empty set)
- · conjunction (\Box), disjunction (\sqcup), negation (\neg)
- · restricted forms of existential and universal quantification (\exists, \forall)

Complex concepts are formed as follows:

$C, D := \top \mid \bot \mid A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists r.C \mid \forall r.C$

where A is a concept name, r a role name.

 \mathcal{ALC} TBox: set of concept inclusions $C \sqsubseteq D$

Professors and MCFs are disjoint classes of faculty

$\mathsf{Prof} \sqsubseteq \mathsf{Faculty} \quad \mathsf{Mcf} \sqsubseteq \mathsf{Faculty} \quad \mathsf{Prof} \sqsubseteq \neg \mathsf{Mcf}$

Every Master's student is supervised by some faculty member

 $\mathsf{MStudent}\sqsubseteq\exists\mathsf{supervisedBy}.\mathsf{Faculty}$

Master's students are students who only take Master-level courses

 $\mathsf{MStudent}\sqsubseteq\mathsf{Student}\sqcap\forall\mathsf{takesCourse}.\mathsf{MCourse}$

FO translation: $\forall x \text{ (MStudent}(x) \rightarrow \text{(Student}(x) \land \forall y \text{ takesCourse}(x, y) \rightarrow \text{MCourse}(y))$

In *EL*, **complex concepts** are constructed as follows:

```
C,D:=\top\mid A\mid C\sqcap D\mid \exists r.C
```

\mathcal{EL} **TBox** = set of inclusions $C \sqsubseteq D$, with C, D as above

In *EL*, **complex concepts** are constructed as follows:

```
C,D:=\top \mid A \mid C \sqcap D \mid \exists r.C
```

 \mathcal{EL} **TBox** = set of inclusions $C \sqsubseteq D$, with C, D as above

Advantage w.r.t. ALC: reasoning much simpler (PTIME vs. EXPTIME)

Despite lower expressivity, *EL* very useful in practice

- · used for large-scale biomedical ontologies (example: SNOMED)
- · importance witnessed by OWL 2 EL profile

We present the **dialect DL-Lite**_{*R*} (which underlies **OWL 2 QL profile**).

DL-Lite_R TBoxes contain two types of axioms:

- concept inclusions $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$
- · role inclusions $S_1 \sqsubseteq S_2$, $S_1 \sqsubseteq \neg S_2$

where $B := A \mid \exists S \quad S := r \mid r^-$

We present the dialect $DL-Lite_R$ (which underlies OWL 2 QL profile).

DL-Lite_R TBoxes contain two types of axioms:

- concept inclusions $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$
- · role inclusions $S_1 \sqsubseteq S_2$, $S_1 \sqsubseteq \neg S_2$

where $B := A \mid \exists S \quad S := r \mid r^-$

Some DL-Lite_R axioms:

- · Every professor teaches something: Prof \sqsubseteq Eteaches
- · Everything that is taught is a course: \exists teaches⁻ \sqsubseteq Course
- Teaches inverse of taughtBy:

teaches \sqsubseteq taughtBy⁻, teaches⁻ \sqsubseteq taughtBy

Instance queries (IQs): find instances of a given concept or role

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ select-project-join queries in SQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land teaches(x, y)$

(find all faculty members that teach something)

Instance queries (IQs): find instances of a given concept or role

Faculty(x) teaches(x, y)

Conjunctive queries (CQs) ~ select-project-join queries in SQL conjunctions of atoms, some variables can be existentially quantified

 $\exists y. Faculty(x) \land teaches(x, y)$

(find all faculty members that teach something)

Ontology-mediated query (OMQ): pair (\mathcal{T}, q) with \mathcal{T} a TBox and q a query (IQ / CQ)

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

14/42

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

database D + query q \rightsquigarrow set of answers ans(q, D)

Answering CQs in the presence of a TBox (ontology)

model \mathcal{I} of KB $(\mathcal{T}, \mathcal{A})$ + query $q \rightarrow \text{set of answers } ans(q, \mathcal{I})$

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

database D + query q \rightsquigarrow set of answers ans(q, D)

Answering CQs in the presence of a TBox (ontology)

model \mathcal{I} of KB (\mathcal{T}, \mathcal{A}) + query $q \rightsquigarrow$ set of answers $ans(q, \mathcal{I})$

Question: how to combine the answers from different models?

Certain answers:

- tuples of inds \vec{a} such that $\vec{a} \in ans(q, \mathcal{I})$ for every model \mathcal{I} of $(\mathcal{T}, \mathcal{A})$
- · corresponds to a form of **entailment**, we'll write $\mathcal{T}, \mathcal{A} \models q(\vec{a})$

Certain answers:

- tuples of inds \vec{a} such that $\vec{a} \in ans(q, \mathcal{I})$ for every model \mathcal{I} of $(\mathcal{T}, \mathcal{A})$
- · corresponds to a form of **entailment**, we'll write $\mathcal{T}, \mathcal{A} \models q(\vec{a})$

Ontology-mediated query answering: computing certain answers

Certain answers:

- tuples of inds \vec{a} such that $\vec{a} \in ans(q, \mathcal{I})$ for every model \mathcal{I} of $(\mathcal{T}, \mathcal{A})$
- · corresponds to a form of **entailment**, we'll write $\mathcal{T}, \mathcal{A} \models q(\vec{a})$

Ontology-mediated query answering: computing certain answers

For Horn DLs (no form of disjunction) like \mathcal{EL} and DL-Lite_R: enough to consider a single canonical model

- · idea: exhaustively apply TBox axioms to ABox
- · possibly infinite ($A \sqsubseteq \exists r.A$)
- · forest-shaped (ABox + new tree structures)
- · give correct answer to all CQs

OMQA viewed as a **decision problem** (yes-or-no question):

- PROBLEM: Q answering in $\mathcal{L}(Q$ a query language, \mathcal{L} a DL)
- INPUT: An *n*-ary query $q \in Q$, an ABox A, a \mathcal{L} -TBox \mathcal{T} , and a **tuple** $\vec{a} \in \text{Ind}(\mathcal{A})^n$
- QUESTION: **Does** T, $A \models q(\vec{a})$?

OMQA viewed as a **decision problem** (yes-or-no question):

- PROBLEM: Q answering in $\mathcal{L}(Q$ a query language, \mathcal{L} a DL)
- INPUT: An *n*-ary query $q \in Q$, an ABox A, a \mathcal{L} -TBox \mathcal{T} , and a tuple $\vec{a} \in \text{Ind}(\mathcal{A})^n$

QUESTION: **Does** $T, A \models q(\vec{a})$?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only

- view rest of input as fixed (of constant size)
- motivation: ABox (data) typically much larger than rest of input

data complexity < combined complexity

Note: use $|\mathcal{A}|$ to denote size of \mathcal{A} (similarly for $|\mathcal{T}|$, |q|, etc.)

Idea: reduce OMQA to database query evaluation

- · rewriting step: OMQ (\mathcal{T} , q) \rightsquigarrow first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Idea: reduce OMQA to database query evaluation

- · rewriting step: OMQ (\mathcal{T} , q) \rightsquigarrow first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of (\mathcal{T}, q) iff for every ABox \mathcal{A} :

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad \mathsf{DB}_{\mathcal{A}} \models q'(\vec{a})$$

Informally: evaluating q' over \mathcal{A} (viewed as DB) gives correct result

Idea: reduce OMQA to database query evaluation

- · rewriting step: OMQ (\mathcal{T} , q) \rightsquigarrow first-order (SQL) query q'
- \cdot evaluation step: evaluate query q' using relational DB system

Advantage: harness efficiency of relational database systems

Key notion: first-order (FO) rewriting

· FO query q' is an FO-rewriting of (\mathcal{T}, q) iff for every ABox \mathcal{A} :

$$\mathcal{T}, \mathcal{A} \models q(\vec{a}) \quad \Leftrightarrow \quad \mathsf{DB}_{\mathcal{A}} \models q'(\vec{a})$$

Informally: evaluating q' over \mathcal{A} (viewed as DB) gives correct result

Can also consider **Datalog rewritings**, defined analogously

Good news: every CQ and DL-Lite_R ontology has an FO-rewriting
Good news: every CQ and DL-Lite_R ontology has an FO-rewriting

Example:

 $\begin{aligned} \textbf{TBox} \ \mathcal{T} = \{ \ \texttt{Prof} \sqsubseteq \texttt{Faculty} \ \texttt{Mcf} \sqsubseteq \texttt{Faculty} \ \texttt{CR} \sqsubseteq \texttt{Faculty} \ \texttt{DR} \sqsubseteq \texttt{Faculty} \\ \texttt{Prof} \sqsubseteq \exists \texttt{teaches} \ \texttt{Mcf} \sqsubseteq \exists \texttt{teaches} \ \end{aligned} \end{aligned}$

Query $q_0 = \exists y \operatorname{Faculty}(x) \land \operatorname{teaches}(x, y)$

Good news: every CQ and DL-Lite_R ontology has an FO-rewriting

Example:

 $\begin{aligned} \textbf{TBox} \ \mathcal{T} = \{ \ \texttt{Prof} \sqsubseteq \texttt{Faculty} \ \texttt{Mcf} \sqsubseteq \texttt{Faculty} \ \texttt{CR} \sqsubseteq \texttt{Faculty} \ \texttt{DR} \sqsubseteq \texttt{Faculty} \\ \texttt{Prof} \sqsubseteq \exists \texttt{teaches} \ \texttt{Mcf} \sqsubseteq \exists \texttt{teaches} \ \end{aligned} \end{aligned}$

Query $q_0 = \exists y \operatorname{Faculty}(x) \land \operatorname{teaches}(x, y)$

The following query is an **FO-rewriting of** (\mathcal{T}, q_0) :

 $q_0 \lor \operatorname{Prof}(x) \lor \operatorname{Mcf}(x)$ $\lor \exists y \operatorname{CR}(x) \land \operatorname{teaches}(x, y) \lor \exists y \operatorname{DR}(x) \land \operatorname{teaches}(x, y)$ Good news: every CQ and DL-Lite_R ontology has an FO-rewriting

Example:

 $\begin{aligned} \textbf{TBox} \ \mathcal{T} = \{ \ \texttt{Prof} \sqsubseteq \texttt{Faculty} \ \texttt{Mcf} \sqsubseteq \texttt{Faculty} \ \texttt{CR} \sqsubseteq \texttt{Faculty} \ \texttt{DR} \sqsubseteq \texttt{Faculty} \\ \texttt{Prof} \sqsubseteq \exists \texttt{teaches} \ \texttt{Mcf} \sqsubseteq \exists \texttt{teaches} \ \end{aligned} \end{aligned}$

Query $q_0 = \exists y \operatorname{Faculty}(x) \land \operatorname{teaches}(x, y)$

The following query is an **FO-rewriting of** (\mathcal{T}, q_0) :

 $q_0 \lor \operatorname{Prof}(x) \lor \operatorname{Mcf}(x)$ $\lor \exists y \operatorname{CR}(x) \land \operatorname{teaches}(x, y) \lor \exists y \operatorname{DR}(x) \land \operatorname{teaches}(x, y)$

Existence of FO-rewritings \Rightarrow low data complexity (AC₀ \subseteq PTIME)

 $\mathcal{EL}:\sqcap,\exists r.C$

In *EL*, FO-rewritings need not exist:

• no FO-rewriting of A(x) w.r.t. $\{\exists r.A \sqsubseteq A\}$

unbounded propagation of A along r

 $\mathcal{EL}: \sqcap, \exists r.C$

In *EL*, FO-rewritings need not exist:

• no FO-rewriting of A(x) w.r.t. $\{\exists r.A \sqsubseteq A\}$

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ~ function-free Horn clauses

- · Datalog program Π : $r(x, y) \land A(x) \rightarrow A(y) \quad A(x) \rightarrow \text{goal}(x)$
- $\cdot \mathcal{T}, \mathcal{A} \models A(c)$ iff can derive goal(c) from \mathcal{A} using Π

Can pass on rewriting to Datalog engine

 $\mathcal{EL}: \sqcap, \exists r.C$

In *EL*, FO-rewritings need not exist:

• no FO-rewriting of A(x) w.r.t. $\{\exists r.A \sqsubseteq A\}$

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ~ function-free Horn clauses

- · Datalog program Π : $r(x, y) \land A(x) \rightarrow A(y) \quad A(x) \rightarrow \text{goal}(x)$
- $\cdot \mathcal{T}, \mathcal{A} \models A(c)$ iff can derive goal(c) from \mathcal{A} using Π

Can pass on rewriting to Datalog engine

Datalog rewriting \Rightarrow PTIME data complexity for CQ answering

$\mathcal{ALC}:\sqcap,\sqcup,\sqcap,\exists r.C,\forall r.C$

Neither FO nor Datalog rewritings need exist

Encoding of non-3-colourability:

TBox axioms:

- $\cdot \top \sqsubseteq R \sqcup G \sqcup B$
- $B \sqcap \exists edge.B \sqsubseteq clash$ (same for R, G)

Graph is 3-colourable ⇔ Boolean query ∃x.clash(x) not entailed

CQ answering has coNP data complexity

Query rewriting: data-independent reduction of OMQA to DB query evaluation Query rewriting: data-independent reduction of OMQA to DB query evaluation

To gain better understanding of query rewriting, we consider the following natural questions:

1. Size of rewritings

- · How large are the rewritten queries?
- 2. Existence of rewritings
- When is query rewriting applicable?

beyond DL-Lite

DL-Lite

SIZE OF REWRITINGS

Most produce unions of conjunctive queries (UCQs = \lor of CQs)

Most produce unions of conjunctive queries (UCQs = \lor of CQs)

Experiments showed that such rewritings can be huge!

 $\cdot\,$ can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

Most produce unions of conjunctive queries (UCQs = \lor of CQs)

Experiments showed that such rewritings can be huge!

 \cdot can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

- · Query: $A_1^0(x) \land \ldots \land A_n^0(x)$
- $\cdot \text{ Ontology: } A_1^1 \sqsubseteq A_1^0 \quad A_2^1 \sqsubseteq A_2^0 \quad \dots \quad A_n^1 \sqsubseteq A_n^0$
- · Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}} A_1^{i_1}(x) \wedge A_1^{i_1}(x) \wedge \ldots \wedge A_1^{i_1}(x)$

Most produce unions of conjunctive queries (UCQs = \lor of CQs)

Experiments showed that such rewritings can be huge!

 \cdot can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

- · Query: $A_1^0(x) \land \ldots \land A_n^0(x)$
- $\cdot \ \, \text{Ontology:} \ \, A_1^1 \sqsubseteq A_1^0 \quad A_2^1 \sqsubseteq A_2^0 \quad \dots \quad A_n^1 \sqsubseteq A_n^0$
- \cdot Rewriting: $\bigvee_{(i_1,\ldots,i_n)\in\{0,1\}}A_1^{i_1}(x)\wedge A_1^{i_1}(x)\wedge\ldots\wedge A_1^{i_1}(x)$

But: simple polysize FO-rewriting does exist!

 $\bigwedge_{i=1}^{n}(\mathsf{A}_{i}^{0}(x)\vee\mathsf{A}_{i}^{1}(x))$

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

NDL-rewritings: non-recursive Datalog queries

$$\begin{aligned} q_1(x,y), q_2(x), q_2(y) &\to \text{goal}(x,y) \\ r(x,y) &\to q_1(x,y) \\ s(y,x) &\to q_1(x,y) \end{aligned} \qquad \begin{array}{l} A(x) \to q_2(x) \\ B(x), p(x,z) \to q_2(x) \end{aligned}$$

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

NDL-rewritings: non-recursive Datalog queries

$$\begin{array}{l} q_1(x,y), q_2(x), q_2(y) \to \text{goal}(x,y) \\ r(x,y) \to q_1(x,y) & A(x) \to q_2(x) \\ s(y,x) \to q_1(x,y) & B(x), p(x,z) \to q_2(x) \end{array}$$

FO-rewritings: **first-order queries** (can also use ∀, ¬)

 $(r(x,y) \lor s(y,x)) \land (A(x) \lor (B(x) \land \exists z \, p(x,z))) \land (A(y) \lor (B(y) \land \exists z \, p(y,z)))$

NDL-rewritings: non-recursive Datalog queries

$$\begin{aligned} q_1(x,y), q_2(x), q_2(y) &\to \text{goal}(x,y) \\ r(x,y) &\to q_1(x,y) \\ s(y,x) &\to q_1(x,y) \end{aligned} \qquad \begin{array}{l} A(x) \to q_2(x) \\ B(x), p(x,z) \to q_2(x) \end{aligned}$$

FO-rewritings: **first-order queries** (can also use ∀, ¬)

What if we replace UCQs by PE / NDL / FO? Do we get polysize rewritings?

[KKPZ12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs q_n and DL-Lite_R TBoxes \mathcal{T}_n such that

- **PE- and NDL-rewritings** of (\mathcal{T}_n, q_n) exponential in $|q_n| + |\mathcal{T}_n|$
- · FO-rewritings of (\mathcal{T}_n, q_n) superpolynomial unless NP/poly \subseteq NC¹

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs q_n and DL-Lite_R TBoxes \mathcal{T}_n such that

- **PE- and NDL-rewritings** of (T_n, q_n) exponential in $|q_n| + |T_n|$
- FO-rewritings of (\mathcal{T}_n, q_n) superpolynomial unless NP/poly \subseteq NC¹

Key proof step: reduce CNF satisfiability to CQ answering in DL-Lite_R

- · TBox generates full binary tree, leaves represent prop. valuations
 - · depth of tree = number of variables
- · tree-shaped query selects valuation, checks clauses are satisfied
 - · number of leaves / branches in query = number of clauses

[KKPZ12]

Depth of TBox =

maximum depth of generated trees in canonical model

 $\cdot \mathcal{T}$ has finite depth \leftrightarrow applying axioms in \mathcal{T} always terminates

[KKPZ14]

Depth of TBox =

maximum depth of generated trees in canonical model

 $\cdot \mathcal{T}$ has finite depth \leftrightarrow applying axioms in \mathcal{T} always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?

[KKPZ14]

Depth of TBox =

maximum depth of generated trees in canonical model

 $\cdot \mathcal{T}$ has finite depth \leftrightarrow applying axioms in \mathcal{T} always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings? Unfortunately not...

Depth of TBox =

maximum depth of generated trees in canonical model

 $\cdot \mathcal{T}$ has finite depth \leftrightarrow applying axioms in \mathcal{T} always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings? Unfortunately not...

Depth 2 TBoxes:

- no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NP/poly \subseteq NC¹

Depth 1 TBoxes:

- no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NL/poly \subseteq NC¹

[KKPZ14]

Depth of TBox =

maximum depth of generated trees in canonical model

 $\cdot \mathcal{T}$ has finite depth \leftrightarrow applying axioms in \mathcal{T} always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings? Unfortunately not...

Depth 2 TBoxes:

- no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NP/poly \subseteq NC¹

Depth 1 TBoxes:

- no polysize PE- or NDL-rewritings
- \cdot no polysize FO-rewritings unless NL/poly \subseteq NC¹
- \cdot but: polysize PE-rewritings for tree-shaped queries

[KKPZ14]

no poly PE but poly NDL

TBox depth

COMPLETING THE LANDSCAPE

no poly PE but poly NDL Boundwike but poly NVH

Strong negative result for PE-rewritings

no polysize PE-rewritings for depth 2 TBoxes + linear CQs

Conditional negative results for FO-rewritings

- · polysize FO-rewritings exist iff
 - \cdot SAC¹ \subseteq NC¹
 - $\cdot \ \mathsf{NL/poly} \subseteq \ \mathsf{NC}^1$

bounded depth + bounded treewidth CQs bounded-leaf tree-shaped CQs

Positive results for NDL-rewritings

- \cdot bounded depth TBox + bounded treewidth CQs
- · bounded-leaf tree-shaped CQs (+ arbitrary TBox)

Takeaway: NDL good target language for rewritings

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size / depth of Boolean circuits / formulas that compute them
- · recall k-ary Boolean function maps tuples from $\{0,1\}^k$ to $\{0,1\}$

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size / depth of Boolean circuits / formulas that compute them
- · recall k-ary Boolean function maps tuples from $\{0,1\}^k$ to $\{0,1\}$

Example: function REACH_n

- input: a Boolean vector representing the adjacency matrix of a directed graph G with *n* vertices including special vertices *s* and *t*
- \cdot output: 1 iff encoded graph G contains a directed path from s to t

Standard computational complexity not the right tool

- \cdot can be used to show no polytime-computable rewriting
- \cdot ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size / depth of Boolean circuits / formulas that compute them
- · recall k-ary Boolean function maps tuples from $\{0,1\}^k$ to $\{0,1\}$

Example: function REACH_n

• input: a Boolean vector representing the adjacency matrix of a directed graph G with *n* vertices including special vertices *s* and *t*

• output: 1 iff encoded graph G contains a directed path from s to t No family of polysize mon. Boolean formulas computing REACH_n

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (v- and \land -gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (v- and \land -gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

Associate Boolean functions with OMQ (T, q)

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (v- and \land -gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

Associate Boolean functions with OMQ (T, q)

'Lower bound' function $f_{a,T}^{\perp B} \Rightarrow$ lower bounds on rewriting size

 \cdot transform rewriting of q, \mathcal{T} into formula / circuit that computes $f_{q, \mathcal{T}}^{LB}$

'Upper bound' function $f_{a,T}^{UB} \Rightarrow$ upper bounds on rewriting size

 \cdot transform formula / circuit that computes $f_{q,\mathcal{T}}^{UB}$ into rewriting of q,\mathcal{T}

PE-rewritings	monotone Boolean formulas (\land,\lor)
NDL-rewritings	monotone Boolean circuits (v- and \land -gates)
FO-rewritings	Boolean formulas (\land,\lor,\neg)

Associate Boolean functions with OMQ (T, q)

'Lower bound' function $f_{q,T}^{LB} \Rightarrow$ lower bounds on rewriting size

 \cdot transform rewriting of q, \mathcal{T} into formula / circuit that computes $f_{q, \mathcal{T}}^{LB}$

'Upper bound' function $f_{a,T}^{UB} \Rightarrow$ upper bounds on rewriting size

 \cdot transform formula / circuit that computes $f_{q,\mathcal{T}}^{UB}$ into rewriting of q,\mathcal{T}

Exploit circuit complexity results about (in)existence of small formulas / circuits computing different classes of Boolean functions

- · which functions expressible as $f_{q,T}^{LB}$ / $f_{q,T}^{UB}$ for given OMQ class?
 - $\cdot\,$ intermediate computational model: hypergraph programs
COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings

Combined complexity of OMQA

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings

Combined complexity of OMQA

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity Can we marry the positive succinctness & complexity results? For the three well-behaved classes of OMQs, define **NDL-rewritings of optimal complexity**:

- rewriting can be constructed by L^C transducer
- \cdot evaluating the rewriting can be done in C

with $C \in \{NL, LOGCFL\}$ the complexity of the OMQ class

[BKKPRZ17]

For the three well-behaved classes of OMQs, define **NDL-rewritings of optimal complexity**:

- rewriting can be constructed by L^C transducer
- \cdot evaluating the rewriting can be done in C

with $C \in \{NL, LOGCFL\}$ the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):

- · compared with other NDL-rewritings (Clipper, Rapid, Presto)
- · our rewritings grow linearly with increasing query size
- · other systems produce rewritings that grow exponentially

[BKKPRZ17]

EXISTENCE OF REWRITINGS

We have seen that:

- \cdot for \mathcal{EL} ontologies, FO-rewritings need not exist
- \cdot for \mathcal{ALC} ontologies, FO- and Datalog rewritings may not exist

But these are **worst-case results**

- \cdot only say that some OMQ that does not have a rewriting
- possible that rewritings exist for many OMQs encountered in practice

To extend the applicability of query rewriting beyond DL-Lite:

- · devise ways of identifying 'good cases'
- · construct rewritings when they exist

Use $(\mathcal{L}, \mathcal{Q})$ to denote set of **OMQs** (\mathcal{T}, q) where:

- $\cdot \ \mathcal{T}$ is an \mathcal{L} -TBox
- \cdot *q* is a query from \mathcal{Q}

```
For example: (\mathcal{EL}, CQ), (\mathcal{ALC}, IQ)
```

FO-rewritability in $(\mathcal{L}, \mathcal{Q})$

- · Input: OMQ (\mathcal{T},q) from $(\mathcal{L},\mathcal{Q})$
- · Problem: decide whether (T, q) has an FO-rewriting

Datalog-rewritability decision problem can be defined analogously

 $\mathcal{Q} \in \{\mathsf{IQ}, \mathsf{CQ}\}$

[BLW13] [BCLW16]

$\mathcal{EL}:\sqcap,\exists r.C$

FO-rewritability is **EXPTIME-complete** in (\mathcal{EL}, IQ) and (\mathcal{EL}, CQ)

 $\mathcal{EL}:\Box,\exists r.C$

FO-rewritability is **EXPTIME-complete** in (\mathcal{EL}, IQ) and (\mathcal{EL}, CQ)

Characterization of non-existence of FO-rewriting

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes

such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

 $\mathcal{EL}:\sqcap,\exists r.C$

FO-rewritability is **EXPTIME-complete** in (\mathcal{EL}, IQ) and (\mathcal{EL}, CQ)

Characterization of non-existence of FO-rewriting

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes

such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

Pumping argument: enough to find ABox of particular finite size k_0 · desired ABox A_{k_0} exists \Rightarrow can construct full sequence of ABoxes

 $\mathcal{EL}:\sqcap,\exists r.C$

FO-rewritability is **EXPTIME-complete** in (\mathcal{EL}, IQ) and (\mathcal{EL}, CQ)

Characterization of non-existence of FO-rewriting

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes

such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

Pumping argument: enough to find ABox of particular finite size k_0 · desired ABox A_{k_0} exists \Rightarrow can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

 $\mathcal{EL}:\Box,\exists r.C$

FO-rewritability is **EXPTIME-complete** in (\mathcal{EL}, IQ) and (\mathcal{EL}, CQ)

Characterization of non-existence of FO-rewriting

OMQ $(\mathcal{T}, A(x))$ is **not FO-rewritable** iff there exist tree-shaped ABoxes

such that for all $i \ge 1$: $\mathcal{T}, \mathcal{A}_i \models A(a_0)$ and $\mathcal{T}, \mathcal{A}'_i \not\models A(a_0)$

Pumping argument: enough to find ABox of particular finite size k_0 · desired ABox A_{k_0} exists \Rightarrow can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well

Idea for IQs: use existing backwards-chaining rewriting procedure

- $\cdot\,$ if FO-rewriting does exist, terminates
- \cdot to ensure termination in general: use characterization result

To make practical: **decomposed algorithm**

- $\cdot\,$ allows for structure sharing
- · produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are very encouraging:

- · terminates quickly, produced rewritings are typically small
- · suggests that in practice FO-rewritings do exist for majority of IQs

Recently extended to handle CQs with promising results

 $\mathcal{ALC}:\neg,\sqcup,\sqcap,\exists r.C,\forall r.C$

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both NEXPTIME-complete.

 $\mathcal{ALC}:\neg,\sqcup,\sqcap,\exists r.C,\forall r.C$

FO-rewritability and Datalog-rewritability of (ALC, IQ) are both NEXPTIME-complete.

Upper bound: connection to constraint satisfaction problems (CSPs)

- · CSP(\mathfrak{B}): decide if homomorphism from input structure \mathcal{D} into \mathfrak{B}
- · (Boolean) OMQs in $(ALC, IQ) \sim$ (complement of) CSPs
- exponential reduction to problem of deciding whether a CSP is definable in FO / Datalog
- use NP upper bounds for latter problems [LLT07] [FKKMMW09]

FO-rewritability of (\mathcal{ALC} , UCQ) is 2NEXPTIME-complete

[FKL17]

FO-rewritability of (*ALC*, UCQ) is **2NEXPTIME-complete**

Instead of CSP, uses MMSNP (monotone monadic strict NP): fragment of monadic second-order logic that generalizes CSP

OMQs from $(ALC, UCQ) \sim$ complement of MMSNP formulas \sim monadic disjunctive Datalog[BCLW13] [BCLW14]

[FKL17]

FO-rewritability of (*ALC*, UCQ) is **2NEXPTIME-complete**

Instead of CSP, uses MMSNP (monotone monadic strict NP): fragment of monadic second-order logic that generalizes CSP

FO-expressibility of (co)MMSNP not studied in CSP literature

[FKL17]

FO-rewritability of (*ALC*, UCQ) **is 2NEXPTIME-complete**

Instead of CSP, uses MMSNP (monotone monadic strict NP): fragment of monadic second-order logic that generalizes CSP

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NEXPTIME-complete

CONCLUDING REMARKS

Ontology-mediated query answering:

- $\cdot\,$ new paradigm for intelligent information systems
- · offers many advantages, but also computational challenges

Query rewriting promising algorithmic approach

Many interesting problems related to OMQA and query rewriting:

- · succinctness of rewritings (Boolean functions, circuit complexity)
- existence of FO and Datalog rewritings (automata, CSP / MMSNP)
- $\cdot\,$ other tools: parameterized complexity, word rewriting

Active area with lots left to explore!

QUESTIONS?

JOINT WORK WITH:

Balder ten Cate, Peter Hansen, Carsten Lutz, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev [KKPZ12] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Exponential Lower Bounds and Separation for Query Rewriting. 39th International Colloquium on Automata, Languages, and Programming (ICALP'12), 2012.

[GS12] G. Gottlob and T. Schwentick: Rewriting Ontological Queries into Small Nonrecursive Datalog Programs. 13th International Conference on the Principles of Knowledge Representation and Reasoning (KR12), 2012.

[GKKPSZ14] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M. Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial Intelligence (AIJ), 2014.

[KKPZ14] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: On the Succinctness of Query Rewriting over Shallow Ontologies. 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'14), 2014. [BKP15] M. Bienvenu, S. Kikot, V. Podolskii: Tree-like Queries in OWL 2 QL: Succinctness and Complexity Results. 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'15), 2015.

[BKKPRZ17] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M. Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and Bounded Treewidth Queries. Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS'17), 2017.

[BKKPZ18] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity. Journal of the ACM (JACM), 2018. [BCLW13] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP. 32nd International Conference on the Principles of Database Systems (PODS'13), 2013.

[BLW13] M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of Atomic Queries in Horn Description Logics. 23rd International Joint Conference on Artificial Intelligence (IJCAI'13), 2013.

[BCLW14] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP. Transactions on Database Systems (TODS), 2014.

[KNG14] M. Kaminski, Y. Nenov, and B. Cuenca Grau: Datalog Rewritability of Disjunctive Datalog Programs and its Applications to Ontology Reasoning. 28th AAAI Conference on Artificial Intelligence (AAAI'14), 2014.

[HLSW15] P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting in the Description Logic EL and Beyond. 24th International Joint Conference on Artificial Intelligence (IJCAI'15), 2015.

[BL16] P. Bourhis and C. Lutz: Containment in Monadic Disjunctive Datalog, MMSNP, and Expressive Description Logics. 15th International Conference on the Principles of Knowledge Representation and Reasoning (KR16), 2016.

[BCLW16] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First Order-Rewritability and Containment of Conjunctive Queries in Horn Description Logics. 25th International Joint Conference on Artificial Intelligence (IJCAI'16), 2016.

[FKL17] C. Feier, A. Kuusisto, and C. Lutz: Rewritability in Monadic Disjunctive Datalog, MMSNP, and Expressive Description Logics. 20th International Conference on Database Theory (ICDT'17), 2017.

[HL17] P. Hansen and C. Lutz: Computing FO-Rewritings in *EL* in Practice: from Atomic to Conjunctive Queries. 16th International Semantic Web Conference (**ISWC'17**), 2017.

[LLT07] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint satisfaction problems. Logical Methods in Computer Science (LMCS), 2007.

[FKKMMW09] R. Freese, M. Kozik, A. Krokhin, M. Maroti, R. Mckenzie, and R. Willard. On maltsev conditions associated with omitting certain types of local structures. Available at: http://www.math.hawaii. edu/~ralph/Classes/619/OmittingTypesMaltsev.pdf, 2009.

[CL17] H. Chen and B. Larose. Asking the Metaquestions in Constraint Tractability. ACM Transactions on Computation Theory (TOCT) 9(3), pages 1-27, 2017.