An Improved CNF Encoding Scheme for Probabilistic Inference

Jean-Marie Lagniez

CRIL, U. Artois & CNRS France

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

- Observations:
 - It is cloudy
 - The grass is wet
 - ▶

- Observations:
 - It is cloudy
 - The grass is wet

► ...

day	cloudy	wet grass			
1	1	1			
2	1	1			
3	1	0			
4	0	0			
· · · · · · · · · · · · · · · · · · ·					

 $\mathbb{P}(\text{wet grass} \mid \text{cloudy}) = \frac{2}{3}$

- Observations:
 - It is cloudy
 - The grass is wet
 - ► ...

day	cloudy	wet grass		
1	1	1		
2	1	1		
3	1	0		
4	0	0		
$\mathbb{P}(wataraaa alaudu) = \frac{2}{2}$				

 $\mathbb{P}(\text{wet grass} \mid \text{cloudy}) = \frac{2}{3}$

 Modelling a problem using a joint distribution on a set of random variables

- An instantiation of X assigns each X ∈ X of some value in the domain (finite) of X
- A joint distribution over X is a function ℙ that maps each instantiation of X to [0, 1]
- Evidence is similar to instantiation but only some of the variables of X are assigned

Cloudy	Rain Sprinkler	Sprinkler	Wet	P
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

Cloudy	Rain	Sprinkler	Wet	P
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

probability of instantiation w

$$\mathbb{P}(C = 0, R = 1, S = 0, W = 1) = \mathbb{P}(C_0, R_1, S_0, W_1) = 0.0225$$

Cloudy	Rain	Sprinkler	Wet	P
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

probability of instantiation w

$$\mathbb{P}(C=0, R=1, S=0, W=1) = \mathbb{P}(C_0, R_1, S_0, W_1) = 0.0225$$

probability of evidence e

$$\mathbb{P}(S_0, W_1) = 0 + 0.0225 + 0 + 0.324 = 0.3465$$

Cloudy	Rain	Sprinkler	Wet	P
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

 The size of the joint distribution is exponential in the number of variables!

probability of instantiation w

$$\mathbb{P}(C = 0, R = 1, S = 0, W = 1) = \mathbb{P}(C_0, R_1, S_0, W_1) = 0.0225$$

probability of evidence e

$$\mathbb{P}(S_0, W_1) = 0 + 0.0225 + 0 + 0.324 = 0.3465$$

Graphical models are a well-studied framework for representing high-dimensional probability distributions, with a wide spectrum of applications.

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

Graphical Models

- Graphical models are commonly separated into:
 - directed models (a.k.a Bayesian networks), with conditional probability tables (CPTs) over a directed (acyclic) graph,
 - undirected models (a.k.a. Markov networks), with energy functions over the cliques of an undirected graph.

Bayesian network

The semantics of Bayesian networks implies the following joint distribution:

$$\mathbb{P}(x_1, x_2, \ldots, x_n) = \prod_i \mathbb{P}(x_i | u_i)$$

The semantics of Bayesian networks implies the following joint distribution:

$$\mathbb{P}(x_1, x_2, \dots, x_n) = \prod_i \mathbb{P}(x_i | u_i)$$

Probabilistic inference is a basic task for handling more complex queries:

- Conditional probabilities: evaluating the probability of an event y given an evidence x
- Most probable explanations: given an evidence x, find an assignment y over the complementary variables that maximizes P(y | x)

Graphical Models

 Unfortunately, probabilistic inference is #P-complete in graphical models, including both Bayesian networks and Markov networks.

Yet, in AI, a great deal of effort has been spent in solving instances of the #SAT problem, which is to count the number of models of an input CNF formula *F*.

- Search-based methods: Cachet, SharpSAT, etc.
- Compilation-based methods: C2D, SDD, ..., targetting a class of Boolean circuits (ex: DNNF) for which model counting is solvable in polynomial time

Yet, in AI, a great deal of effort has been spent in solving instances of the #SAT problem, which is to count the number of models of an input CNF formula *F*.

- Search-based methods: Cachet, SharpSAT, etc.
- Compilation-based methods: C2D, SDD, ..., targetting a class of Boolean circuits (ex: DNNF) for which model counting is solvable in polynomial time

Most of these methods can handle **weighted** #SAT instances, in which the literals of the input formula are associated with weights.

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

- Let $V = \{v_1, \dots, v_n\}$ be a set of Boolean variables.
- Let $L = \{v_i, \overline{v}_i \mid v_i \in V\}$ be the set of literals over *V*.
- ► A wCNF formula over V is a pair (F, w) such that:
 - ► *F* is a conjunction of clauses,
 - w is a map from L to \mathbb{Q} (i.e. a weighting of literals)

The weight of a variable assignment v ∈ {0,1}ⁿ is the product of weights of literals which are true in v:

$$W(\mathbf{v}) = \prod_{\ell \in L, \mathbf{v} \models \ell} w(\ell)$$

The weight of a variable assignment v ∈ {0,1}ⁿ is the product of weights of literals which are true in v:

$$W(\mathbf{v}) = \prod_{\ell \in L, \mathbf{v} \models \ell} w(\ell)$$

The weighted model count of a wCNF formula is the sum of weights of the models of F:

$$W(F) = \sum_{\boldsymbol{v} \in \{0,1\}^n, \boldsymbol{v} \models F} W(\boldsymbol{v})$$

Weighted Model Counting

Weighted Model Counting

Yes! The idea is to find a translation function τ mapping

- any graphical model (Bayes or Markov net) N to a weighted CNF formula τ(N), and
- any partial assignment **x** to a term $\tau(\mathbf{x})$,

such that

$$\mathbb{P}_{N}(\boldsymbol{x}) = \frac{W[\tau(N) \wedge \tau(x)]}{W[\tau(N)]}$$

where $W[\tau(N)]$ is the **partition constant** (= 1 for BNs).

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

An indicator variable v_{ij} for each random variable X_i and domain value $j \in D(X_i)$

- An indicator variable v_{ij} for each random variable X_i and domain value $j \in D(X_i)$
- ► A set of indicator clauses for each random variable *X_i* (direct encoding)

- An indicator variable v_{ij} for each random variable X_i and domain value $j \in D(X_i)$
- ► A set of indicator clauses for each random variable *X_i* (direct encoding)
- A parameter variable θ_{ir} for each row *r* in the table of X_i , and a weight $w(\theta_{ir}) = \mathbb{P}(x_i | \mathbf{x}_r)$

- An indicator variable v_{ij} for each random variable X_i and domain value $j \in D(X_i)$
- ► A set of indicator clauses for each random variable X_i (direct encoding)
- A parameter variable θ_{ir} for each row *r* in the table of X_i , and a weight $w(\theta_{ir}) = \mathbb{P}(x_i | \mathbf{x}_r)$
- A set of equivalences describing the semantics of each row in the table of X_i

Local Structure

In practice, variables are not necessary binary and CPTs can be quite large

Α	В	С	ℙ(<i>c</i> <i>a</i> , <i>b</i>)
a ₁	b_1	C1	0
a ₁	b_1	<i>C</i> ₂	0.5
<i>a</i> 1	b_1	C ₃	0.5
a ₁	b ₂	C1	0.2
a ₁	b ₂	<i>C</i> ₂	0.3
a ₁	b ₂	С3	0.5
a_2	b_1	<i>C</i> 1	0
a_2	b_1	<i>C</i> ₂	0
a_2	b_1	C ₃	1
a_2	b ₂	C1	0.2
a_2	b ₂	<i>C</i> ₂	0.3
a ₂	b2	C3	0.5

Thus, the generated CNF encoding can be large, challenging state-of-the-art weighted model counters

Α	В	С	
a ₁	b_1	<i>C</i> 1	0
a ₁	b_1	<i>C</i> 2	0.5
a_1	b_1	<i>C</i> 3	0.5
a ₁	b ₂	<i>C</i> 1	0.2
a ₁	b ₂	<i>c</i> ₂	0.3
a ₁	b ₂	<i>C</i> 3	0.5
a_2	b_1	<i>C</i> 1	0
a_2	b_1	<i>C</i> ₂	0
a_2	b_1	<i>C</i> 3	1
a_2	b ₂	<i>C</i> 1	0.2
a_2	b ₂	<i>c</i> ₂	0.3
a_2	b ₂	<i>C</i> 3	0.5

А	В	С	₽(c a,b)
a ₁	b ₁	<i>C</i> 1	0
a_1	b_1	<i>C</i> 2	0.5
a_1	b_1	<i>C</i> 3	0.5
a ₁	b ₂	<i>C</i> 1	0.2
a ₁	b ₂	<i>C</i> ₂	0.3
a ₁	b ₂	<i>C</i> 3	0.5
a_2	b_1	<i>C</i> 1	0
a_2	b_1	<i>C</i> ₂	0
a_2	b_1	<i>C</i> 3	1
a_2	b ₂	<i>C</i> 1	0.2
a_2	b ₂	<i>C</i> ₂	0.3
a ₂	b ₂	C3	0.5

- The weight of a model is obtained by multiplying the weights of its positive parameters
- Then, all models which contain a positive parameter with a weight of 0 can be removed

Α	В	С	₽(<i>c</i> <i>a</i> , <i>b</i>)
a ₁	<i>b</i> 1	<i>C</i> 1	0
<i>a</i> 1	b_1	<i>C</i> 2	0.5
a ₁	b_1	<i>C</i> 3	0.5
a ₁	b ₂	<i>C</i> 1	0.2
a ₁	b ₂	<i>c</i> ₂	0.3
a ₁	b ₂	<i>C</i> 3	0.5
<i>a</i> 2	b_1	<i>C</i> 1	0
a_2	b_1	<i>C</i> ₂	0
a_2	b_1	<i>C</i> 3	1
a_2	b ₂	<i>C</i> 1	0.2
a_2	b ₂	<i>c</i> ₂	0.3
a_2	b ₂	<i>c</i> ₃	0.5

- The weight of a model is obtained by multiplying the weights of its positive parameters
- Then, all models which contain a positive parameter with a weight of 0 can be removed

 $\neg a_1 \lor \neg b_1 \lor \neg c_1 \quad \neg a_2 \lor \neg b_1 \lor \neg c_1 \quad \neg a_2 \lor \neg b_1 \lor \neg c_2$

Equal Parameters

А	В	С	
a ₁	<i>b</i> ₁	C1	0
a ₁	b_1	<i>C</i> ₂	0.5
<i>a</i> 1	b1	C 3	0.5
a ₁	b ₂	<i>C</i> 1	0.2
a_1	b ₂	<i>C</i> ₂	0.3
a ₁	b ₂	<i>C</i> 3	0.5
a_2	b_1	<i>C</i> 1	0
a_2	b_1	<i>C</i> ₂	0
a_2	b_1	<i>C</i> 3	1
a_2	b ₂	C1	0.2
a_2	b ₂	<i>C</i> ₂	0.3
a_2	b ₂	<i>C</i> 3	0.5

Equal Parameters

Α	В	С	₽(<i>c</i> <i>a</i> , <i>b</i>)
a ₁	b ₁	<i>C</i> 1	0
a ₁	<i>b</i> 1	<i>C</i> ₂	0.5
a ₁	b ₁	<i>C</i> 3	0.5
a ₁	b ₂	<i>C</i> 1	0.2
a ₁	b ₂	<i>c</i> ₂	0.3
a ₁	b ₂	<i>C</i> 3	0.5
a_2	b_1	<i>C</i> 1	0
a_2	b_1	<i>C</i> ₂	0
a_2	b_1	<i>C</i> 3	1
a_2	b ₂	<i>C</i> 1	0.2
a_2	b ₂	<i>c</i> ₂	0.3
a_2	b ₂	<i>C</i> 3	0.5

- ENC1 will generate 9 parameter variables
- Group parameters that are equal and use a unique parameter variable by group

$$a_1 \wedge b_1 \wedge c_2 \rightarrow \theta_{c1}$$

$$a_1 \wedge b_1 \wedge c_3 \rightarrow \theta_{c1}$$

$$a_1 \wedge b_2 \wedge c_3 \rightarrow \theta_{c1}$$

$$a_2 \wedge b_2 \wedge c_3 \rightarrow \theta_{c1}$$

with $w(\theta_{c1}) = 0.5$

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

А	В	С	₽(<i>c</i> <i>a</i> , <i>b</i>)	В	Е	D	$\mathbb{P}(d b,e)$
a ₁	b ₁	C1	0.25	b ₁	e ₁	<i>d</i> ₁	0.2
a ₁	b_1	<i>C</i> ₂	0.25	b_1	e_1	d_2	0.3
a ₁	b ₂	<i>C</i> 1	0.25	b_1	<i>e</i> ₂	d_1	0.1
a ₁	b ₂	<i>C</i> ₂	0.25	b_1	<i>e</i> ₂	d_2	0.4
a_2	b_1	<i>C</i> 1	0	b ₂	e_1	d_1	0.1
a_2	b_1	<i>c</i> ₂	0.5	b ₂	e_1	d_2	0.4
a_2	b ₂	<i>C</i> ₁	0.2	b ₂	e_2	d_1	0.2
a_2	b ₂	<i>c</i> ₂	0.3	b ₂	e_2	d_2	0.3

$$\begin{aligned} a_1 \wedge b_1 \wedge c_1 &\to \theta_{c1} & \neg a_2 \vee \neg b_1 \vee \neg c_1 \\ a_1 \wedge b_1 \wedge c_2 &\to \theta_{c1} & a_2 \wedge b_1 \wedge c_2 &\to \theta_{c2} \\ a_1 \wedge b_2 \wedge c_1 &\to \theta_{c1} & a_2 \wedge b_2 \wedge c_1 &\to \theta_{c3} \\ a_1 \wedge b_2 \wedge c_2 &\to \theta_{c1} & a_2 \wedge b_2 \wedge c_2 &\to \theta_{c4} \end{aligned}$$

$b_1 \wedge e_1 \wedge d_1 \to \theta_{d5}$	$b_2 \wedge e_1 \wedge d_1 \rightarrow \theta_{d7}$
$b_1 \wedge e_1 \wedge d_2 \rightarrow \theta_{d6}$	$b_2 \wedge e_1 \wedge d_2 \rightarrow \theta_{d8}$
$b_1 \wedge e_2 \wedge d_1 \rightarrow \theta_{d7}$	$b_2 \wedge e_2 \wedge d_1 \rightarrow \theta_{d5}$
$b_1 \wedge e_2 \wedge d_2 \rightarrow \theta_{d8}$	$b_2 \wedge e_2 \wedge d_2 \rightarrow \theta_{d6}$

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

Α	В	С	₽(<i>c</i> <i>a</i> , <i>b</i>)	В	Е	D	$\mathbb{P}(d b,e)$
a ₁	b ₁	C1	0.25	b ₁	e ₁	<i>d</i> ₁	0.2
a ₁	b_1	<i>C</i> ₂	0.25	b_1	e_1	d_2	0.3
a ₁	b ₂	<i>C</i> 1	0.25	b_1	e ₂	d_1	0.1
a ₁	b ₂	<i>C</i> ₂	0.25	b_1	e ₂	d_2	0.4
a_2	b_1	<i>C</i> 1	0	b ₂	e ₁	d_1	0.1
a_2	b_1	<i>c</i> ₂	0.5	b ₂	e_1	d_2	0.4
a_2	b ₂	<i>C</i> ₁	0.2	b ₂	e_2	d_1	0.2
a_2	b ₂	<i>C</i> ₂	0.3	b ₂	e ₂	d_2	0.3

$a_1 \wedge b_1 \wedge c_1 \rightarrow \theta_{c1}$	$\neg a_2 \lor \neg b_1 \lor \neg c_1$
$a_1 \wedge b_1 \wedge c_2 \rightarrow \theta_{c1}$	$a_2 \wedge b_1 \wedge c_2 \rightarrow \theta_{c2}$
$a_1 \wedge b_2 \wedge c_1 \rightarrow \theta_{c1}$	$a_2 \wedge b_2 \wedge c_1 \rightarrow \theta_{c2}$

 $b_1 \wedge e_1 \wedge d_1 \rightarrow \theta_{d5}$ $b_2 \wedge e_1 \wedge d_1 \rightarrow \theta_{d7}$ $b_1 \wedge e_1 \wedge d_2 \rightarrow \theta_{d6}$ $b_2 \wedge e_1 \wedge d_2 \rightarrow \theta_{d8}$ $b_1 \wedge e_2 \wedge d_1 \rightarrow \theta_{d7}$ $b_2 \wedge e_2 \wedge d_1 \rightarrow \theta_{d5}$ $a_1 \wedge b_2 \wedge c_2 \rightarrow \theta_{c1}$ $a_2 \wedge b_2 \wedge c_2 \rightarrow \theta_{c4}$ $b_1 \wedge e_2 \wedge d_2 \rightarrow \theta_{d8}$ $b_2 \wedge e_2 \wedge d_2 \rightarrow \theta_{d6}$

Computing implicants before translating into CNF promotes the identification of independent components

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

А	В	С	₽(<i>c</i> <i>a</i> , <i>b</i>)	В	Е	D	$\mathbb{P}(d b,e)$
<i>a</i> 1	b ₁	<i>C</i> 1	0.25	b ₁	e ₁	<i>d</i> ₁	0.2
<i>a</i> 1	b ₁	<i>C</i> ₂	0.25	b_1	e_1	d_2	0.3
<i>a</i> 1	b ₂	<i>C</i> 1	0.25	b_1	e ₂	d_1	0.1
<i>a</i> 1	b ₂	<i>C</i> ₂	0.25	b_1	e ₂	d_2	0.4
a_2	b_1	<i>C</i> 1	0	b ₂	e_1	d_1	0.1
a_2	b_1	<i>c</i> ₂	0.5	b ₂	e_1	d_2	0.4
a_2	b ₂	<i>C</i> ₁	0.2	b ₂	e ₂	d_1	0.2
a_2	b ₂	<i>c</i> ₂	0.3	b ₂	e_2	d_2	0.3

 $a_1 \wedge b_1 \wedge c_1 \rightarrow \theta_{c1}$ $\neg a_2 \vee \neg b_1 \vee \neg c_1$ $b_1 \wedge e_1 \wedge d_1 \rightarrow \theta_{d5}$ $b_2 \wedge e_1 \wedge d_1 \rightarrow \theta_{d7}$

 $a_1 \wedge b_1 \wedge c_2 \rightarrow \theta_{c1}$ $a_2 \wedge b_1 \wedge c_2 \rightarrow \theta_{c2}$ $b_1 \wedge e_1 \wedge d_2 \rightarrow \theta_{d6}$ $b_2 \wedge e_1 \wedge d_2 \rightarrow \theta_{d8}$ $a_1 \wedge b_2 \wedge c_1 \rightarrow \theta_{c1}$ $a_2 \wedge b_2 \wedge c_1 \rightarrow \theta_{c3}$ $b_1 \wedge e_2 \wedge d_1 \rightarrow \theta_{d7}$ $b_2 \wedge e_2 \wedge d_1 \rightarrow \theta_{d5}$

 $a_1 \wedge b_2 \wedge c_2 \rightarrow \theta_{c1}$ $a_2 \wedge b_2 \wedge c_2 \rightarrow \theta_{c4}$ $b_1 \wedge e_2 \wedge d_2 \rightarrow \theta_{d8}$ $b_2 \wedge e_2 \wedge d_2 \rightarrow \theta_{d6}$

Computing implicants before translating into CNF promotes the identification of independent components

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

Α	В	С	₽(<i>c</i> <i>a</i> , <i>b</i>)	В	Е	D	$\mathbb{P}(d b,e)$
<i>a</i> 1	b ₁	<i>C</i> 1	0.25	b ₁	e ₁	<i>d</i> ₁	0.2
a ₁	<i>b</i> 1	<i>C</i> 2	0.25	b_1	e_1	d_2	0.3
<i>a</i> 1	b ₂	<i>C</i> 1	0.25	b_1	<i>e</i> ₂	d_1	0.1
a ₁	b ₂	<i>C</i> ₂	0.25	b_1	<i>e</i> ₂	d_2	0.4
a_2	b_1	<i>C</i> 1	0	b ₂	e_1	d_1	0.1
a_2	b_1	<i>c</i> ₂	0.5	b ₂	e_1	d_2	0.4
a_2	b ₂	<i>C</i> ₁	0.2	b ₂	e_2	d_1	0.2
a_2	b ₂	<i>c</i> ₂	0.3	b ₂	e ₂	d_2	0.3

$a_1 \rightarrow \theta_{c1}$	$\neg a_2 \lor \neg b_1 \lor \neg c_1$	$b_1 \wedge e_1 \wedge d_1 \rightarrow \theta_{d5}$	$b_2 \wedge e_1 \wedge d_1 \rightarrow \theta_{d7}$
	$a_2 \wedge b_1 \wedge c_2 \rightarrow \theta_{c2}$	$b_1 \wedge e_1 \wedge d_2 \rightarrow \theta_{d6}$	$b_2 \wedge e_1 \wedge d_2 \rightarrow \theta_{d8}$
	$a_2 \wedge b_2 \wedge c_1 \rightarrow \theta_{c3}$	$b_1 \wedge e_2 \wedge d_1 \rightarrow \theta_{d7}$	$b_2 \wedge e_2 \wedge d_1 \rightarrow \theta_{d5}$
	$a_2 \wedge b_2 \wedge c_2 \rightarrow \theta_{c4}$	$b_1 \wedge e_2 \wedge d_2 \rightarrow \theta_{d8}$	$b_2 \wedge e_2 \wedge d_2 \rightarrow \theta_{d6}$

 Computing implicants before translating into CNF promotes the identification of independent components

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017

Chavira and Darwiche's Translation

A more compact encoding of tables:

- Group rows with the same probability, and compress them (into a prime DNF);
- Use implications instead of equivalences.

Two key ideas:

- Use a log-encoding of indicator variables
- Use a scaling factor w₀ which implicitly stores one group per table

- In the log encoding domains are represented with m = [log₂(d)] propositional variables
- ► Each of the 2^{*m*} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

- In the log encoding domains are represented with m = [log₂(d)] propositional variables
- ► Each of the 2^{*m*} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

- In the log encoding domains are represented with m = [log₂(d)] propositional variables
- ► Each of the 2^{*m*} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

green	0
blue	1
gray	2
purple	3
black	4
white	5

- In the log encoding domains are represented with m = [log₂(d)] propositional variables
- ► Each of the 2^{*m*} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

3 propositional variables $\{c_2, c_1, c_0\}$

green	0
blue	1
gray	2
purple	3
black	4
white	5

- In the log encoding domains are represented with m = [log₂(d)] propositional variables
- ► Each of the 2^{*m*} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

3 propositional variables $\{c_2, c_1, c_0\}$

green	0	$\neg c_2 \land \neg c_1 \land \neg c_0$
blue	1	$\neg c_2 \land \neg c_1 \land c_0$
gray	2	$\neg c_2 \land c_1 \land \neg c_0$
purple	3	$\neg c_2 \land c_1 \land c_0$
black	4	$C_2 \land \neg C_1 \land \neg C_0$
white	5	$C_2 \land \neg C_1 \land C_0$

- In the log encoding domains are represented with m = [log₂(d)] propositional variables
- ► Each of the 2^{*m*} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

3 propositional variables $\{c_2, c_1, c_0\}$

green	0	$\neg c_2 \land \neg c_1 \land \neg c_0$
blue	1	$\neg c_2 \land \neg c_1 \land c_0$
gray	2	$\neg c_2 \land c_1 \land \neg c_0$
purple	3	$\neg c_2 \land c_1 \land c_0$
black	4	$C_2 \land \neg C_1 \land \neg C_0$
white	5	$C_2 \land \neg C_1 \land C_0$

We need to exclude the values in excess with a logarithmic number of clauses

$$\neg c_2 \lor \neg c_1 \lor \neg c_0 \qquad \neg c_2 \lor \neg c_1 \lor c_0$$

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_R implicit

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

Α	В	С	$\mathbb{P}(C A,B)$
0	0	0	0.2
0	0	1	0.3
0	1	0	0.3
0	1	1	0.2
1	0	0	0
1	0	1	0
1	1	0	0.6
1	1	1	0.4

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

Α	В	С	$\mathbb{P}(C A,B)$
0	0	0	0.2
0	0	1	0.3
0	1	0	0.3
0	1	1	0.2
1	0	0	0
-1	0	1	0
1	1	0	0.6
1	1	1	0.4

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

А	В	С	$\mathbb{P}(C A,B)$	0.3
0	0	0	0.2	
0	0	1	0.3	
0	1	0	0.3	
0	1	1	0.2	
1	0	0	0	
1	0	1	0	
1	1	0	0.6	
1	1	1	0.4	
	A 0 0 1 1 1 1	A B 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1	

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

Α	В	С	P(C A,B)	0.3
0	0	0	0.2	$\frac{0.2}{0.3}$
0	0	1	0.3	
0	1	0	0.3	
0	1	1	0.2	
1	0	0	0	
1	0	1	0	
1	1	0	0.6	
1	1	1	0.4	

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

Α	В	С	P(C A,B)	0.3
0	0	0	0.2	$\frac{0.2}{0.3}$
0	0	1	0.3	
0	1	0	0.3	
0	1	1	0.2	$\frac{0.2}{0.3}$
1	0	0	0	0.0
1	0	1	0	
1	1	0	0.6	$\frac{0.6}{0.3}$
1	1	1	0.4	$\frac{0.4}{0.3}$

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

- For each instantiation, exactly one parameter variable will be assigned to true
- ► Then, we can keep for each CPT *R* one parameter variable θ_R implicit

	А	В	С	P(C A,B)	0.3
θ_{c1}	0	0	0	0.2	$\frac{0.2}{0.3} = w(\theta_{c1})$
	0	0	1	0.3	
	0	1	0	0.3	
θ_{c1}	0	1	1	0.2	$\frac{0.2}{0.3} = w(\theta_{c1})$
	1	0	0	0	
	1	0	1	0	
θ_{c2}	1	1	0	0.6	$\frac{0.6}{0.3} = w(\theta_{c2})$
θ_{c3}	1	1	1	0.4	$\frac{0.4}{0.3} = w(\theta_{c3})$
$a_0 \wedge b_0 \wedge c_0 \rightarrow \theta_{c1}$ $a_0 \wedge b_1 \wedge c_1 \rightarrow \theta_{c1}$					
$a_1 \wedge b_1 \wedge c_0 \rightarrow \theta_{c2}$ $a_1 \wedge b_1 \wedge c_1 \rightarrow \theta_{c3}$					$\wedge c_1 \rightarrow \theta_{c3}$

► To make the translation faithful we now assign a specific weight to the negative parameter literals: $w(\neg \theta_{ij}) = 1 - w(\theta_{ij})$

Running Example

Running Example

Running Example

• The weighted model count of (F, w, w_0) becomes:

$$W(F) = w_0\left(\sum_{\boldsymbol{v}\in\{0,1\}^n, \boldsymbol{v}\models F} W(\boldsymbol{v})\right)$$

Theoretical Properties

Let τ be the Chavira and Darwiche's translation, and let τ^* be our improvement. Then, for any **Bayesian network** *N*,

- the number of variables in τ*(N) is smaller than the number of variables in τ(N),
- the size of $\tau^*(N)$ is smaller than the size of $\tau(N)$, and
- the translation τ^* is faithful:

 $W[\tau^*(\mathbf{x})] = \mathbb{P}_N(\mathbf{x})$, for every variable instantiation \mathbf{x}

Contrastingly, τ is not faithful (a DNNF minimization is required to achieve this).

Theoretical Properties

Let τ be the Chavira and Darwiche's translation, and let τ^* be our improvement. Then, for any **Bayesian network** *N*,

- the number of variables in τ*(N) is smaller than the number of variables in τ(N),
- the size of $\tau^*(N)$ is smaller than the size of $\tau(N)$, and
- the translation τ^* is faithful:

 $W[\tau^*(\mathbf{x})] = \mathbb{P}_N(\mathbf{x})$, for every variable instantiation \mathbf{x}

Contrastingly, τ is not faithful (a DNNF minimization is required to achieve this).

Note: The translations τ and τ^* can easily be extended to Markov networks, where $W[\tau(N)]$ captures the partition constant.

Experimental Setup

- 1452 graphical models
- 6 data sets: Diagnose (100), UAI (377), Grids (320), Pedigree (22), Promedas (238), Relational (395)
- Cluster of Quad-core Intel XEON X5550 with 32GiB of memory on Linux CentOS
- Time-out =900s (including the translation phase, and the minimization phase for τ)
- Memory-out = 8 GiB

Our Results: An Improved Translation

Compilation times

Sizes of compiled forms

Experimental Results: τ^* versus τ

Evaluate the computational benefits offered by the new translation τ^* method, with respect to Chavira and Darwiche's method τ (+ minimization). Both methods are used upstream to C2D.

Our Results: An Improved Translation

Experimental Results: τ^* + C2D versus ACE

Evaluate the computational benefits offered by the new translation τ^* (used upstream to C2D), with respect to ACE (used with -forceC2d), a compiler dedicated to graphical models.

Conclusions

Summary

- Weighted model counting is a promising approach for solving the probabilistic inference problem.
- We defined a new translation method based on two simple ideas;
 - τ* is faithful
 - In practice τ^* + C2D proves typically better than τ + C2D + minimization,
 - In practice τ* + C2D proves typically better than ACE as to the sizes of the compiled forms.

Conclusions

Summary

- Weighted model counting is a promising approach for solving the probabilistic inference problem.
- We defined a new translation method based on two simple ideas;
 - τ* is faithful
 - In practice τ^* + C2D proves typically better than τ + C2D + minimization,
 - In practice τ* + C2D proves typically better than ACE as to the sizes of the compiled forms.

Perspectives

Many questions remain open in reducing probabilistic inference to WMC. In particular, various translations can be devised:

- targetting other graphical models (relational, dynamic BNs, etc.),
- targetting other compiled forms (SDDs, etc.).

An Improved CNF Encoding Scheme for Probabilistic Inference

Jean-Marie Lagniez

CRIL, U. Artois & CNRS France

