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Probabilistic Inference

Ï Observations:
Ï It is cloudy
Ï The grass is wet
Ï . . .

day cloudy wet grass
1 1 1
2 1 1
3 1 0
4 0 0

P(wet grass | cloudy) = 2
3

Ï Modelling a problem using a joint distribution on a set of
random variables
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Probabilistic Inference

Ï An instantiation of X assigns each X ∈X of some value in the
domain (finite) of X

Ï A joint distribution over X is a function P that maps each
instantiation of X to [0,1]

Ï Evidence is similar to instantiation but only some of the
variables of X are assigned
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Probabilistic Inference: example

Cloudy Rain Sprinkler Wet P

0 0 0 0 0.225
0 0 0 1 0
0 0 1 0 0.45
0 0 1 1 0.18
0 1 0 0 0.0025
0 1 0 1 0.0225
0 1 1 0 0
0 1 1 1 0.025
1 0 0 0 0.09
1 0 0 1 0
1 0 1 0 0.002
1 0 1 1 0.008
1 1 0 0 0.036
1 1 0 1 0.324
1 1 1 0 0
1 1 1 1 0.04

Ï The size of the joint
distribution is exponential in
the number of variables!

Ï probability of instantiation w

P(C = 0,R = 1,S = 0,W = 1)=P(C0,R1,S0,W1)= 0.0225

Ï probability of evidence e

P(S0,W1)= 0+0.0225+0+0.324= 0.3465
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Graphical Models

Graphical
Models

Bioinformatics Financial Modeling Image Processing Social Networks Analysis

Graphical models are a well-studied framework for representing
high-dimensional probability distributions, with a wide spectrum of
applications.
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Graphical Models

Cloudy

Sprinkler Rain

Wet

C P(C)
0 0.5
1 0.5

S C P(S |C)
0 0 0.5
1 0 0.5
0 1 0.9
1 1 0.1

R C P(R |C)
0 0 0.9
1 0 0.1
0 1 0.2
1 1 0.8

W S R P(W |S,R)
0 0 0 1.0
1 0 0 0.0
0 0 1 0.1
1 0 1 0.9
0 1 0 0.2
1 1 0 0.8
0 1 1 0.0
1 1 1 1.0

A Bayesian Network

Ï Graphical models are commonly separated into:
Ï directed models (a.k.a Bayesian networks), with conditional

probability tables (CPTs) over a directed (acyclic) graph,
Ï undirected models (a.k.a. Markov networks), with energy

functions over the cliques of an undirected graph.
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Bayesian network

Hey! What’s the probabi-
lity that the grass is wet
and the sprinkler is off?

The semantics of Bayesian networks implies the following joint
distribution:

P(x1,x2, . . . ,xn)=
∏

i
P(xi |ui)
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Probabilistic Inference

What are the chances of
having a wet grass when
it’s cloudy?

Product rule: P(A,X)=P(A|X)×P(X)

Bayes’ rule: P(A|X)= P(X |A)×P(A)
P(X)

P(w1 | c1)= P(w1,c1)
P(c1)

P(c1 | s1)= P(s1,c1)×P(s1)
P(c1)

Ï Probabilistic inference is a basic task for handling more complex queries:
Ï Conditional probabilities: evaluating the probability of an event y given an

evidence x
Ï Most probable explanations: given an evidence x , find an assignment y

over the complementary variables that maximizes P(y | x)
Ï . . .

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 10/33



Graphical Models

. . .

Ï Unfortunately, probabilistic inference is #P-complete in
graphical models, including both Bayesian networks and
Markov networks.
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Weighted Model Counting

Yet, in AI, a great deal of effort has been spent in solving instances of
the #SAT problem, which is to count the number of models of an
input CNF formula F .

Ï Search-based methods: Cachet, SharpSAT, etc.
Ï Compilation-based methods: C2D, SDD, ..., targetting a class

of Boolean circuits (ex: DNNF) for which model counting is
solvable in polynomial time

Most of these methods can handle weighted #SAT instances, in
which the literals of the input formula are associated with weights.
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Weighted CNF Formula

Ï Let V = {v1, · · · ,vn} be a set of Boolean variables.

Ï Let L= {vi ,v i | vi ∈V } be the set of literals over V .

Ï A wCNF formula over V is a pair (F ,w) such that:
Ï F is a conjunction of clauses,
Ï w is a map from L to Q (i.e. a weighting of literals)
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Weighted Model Counting

Ï The weight of a variable assignment v ∈ {0,1}n is the product of
weights of literals which are true in v :

W (v)= ∏
`∈L,v |=`

w(`)

Ï The weighted model count of a wCNF formula is the sum of
weights of the models of F :

W (F)= ∑
v∈{0,1}n,v |=F

W (v)
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Weighted Model Counting

So . . . Can we reduce the pro-
blem of probabilistic inference
to Weighted Model Counting?

Yes! The idea is to find a translation function τ mapping
Ï any graphical model (Bayes or Markov net) N to a weighted

CNF formula τ(N), and
Ï any partial assignment x to a term τ(x),

such that

PN(x)=
W [τ(N)∧τ(x)]

W [τ(N)]

where W [τ(N)] is the partition constant (= 1 for BNs).
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ENC1 [Darwiche, KR’02]

Cloudy

Sprinkler

{c0,c1}

{s0,s1}

C P(C)
0 0.5

θc1

1 0.5

θc2

S C P(S |C)
0 0 0.5

θs1

1 0 0.5

θs2

0 1 0.9

θs3

1 1 0.1

θs4

c0 ∨c1
c0 ∨c1

s0 ∨s1
s0 ∨s1

c0 ↔ θc1
c1 ↔ θc2

s0 ∧c0 ↔ θs1
s1 ∧c0 ↔ θs2
s0 ∧c1 ↔ θs3
s1 ∧c1 ↔ θs4

Ï An indicator variable vij for each random variable Xi and domain value
j ∈D(Xi)

Ï A set of indicator clauses for each random variable Xi (direct encoding)

Ï A parameter variable θir for each row r in the table of Xi , and a weight
w(θir )=P(xi | x r )

Ï A set of equivalences describing the semantics of each row in the table of Xi
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Local Structure

Ï In practice, variables are not necessary binary and CPTs can
be quite large

A B C P(c|a,b)
a1 b1 c1 0
a1 b1 c2 0.5
a1 b1 c3 0.5
a1 b2 c1 0.2
a1 b2 c2 0.3
a1 b2 c3 0.5
a2 b1 c1 0
a2 b1 c2 0
a2 b1 c3 1
a2 b2 c1 0.2
a2 b2 c2 0.3
a2 b2 c3 0.5

Ï Thus, the generated CNF encoding can be large, challenging
state-of-the-art weighted model counters
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Remove Inconsistent Assignments

A B C P(c|a,b)
a1 b1 c1 0
a1 b1 c2 0.5
a1 b1 c3 0.5
a1 b2 c1 0.2
a1 b2 c2 0.3
a1 b2 c3 0.5
a2 b1 c1 0
a2 b1 c2 0
a2 b1 c3 1
a2 b2 c1 0.2
a2 b2 c2 0.3
a2 b2 c3 0.5

Ï The weight of a model is obtained
by multiplying the weights of its
positive parameters

Ï Then, all models which contain a
positive parameter with a weight of 0
can be removed

¬a1 ∨¬b1 ∨¬c1 ¬a2 ∨¬b1 ∨¬c1 ¬a2 ∨¬b1 ∨¬c2
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Equal Parameters

A B C P(c|a,b)
a1 b1 c1 0
a1 b1 c2 0.5
a1 b1 c3 0.5
a1 b2 c1 0.2
a1 b2 c2 0.3
a1 b2 c3 0.5
a2 b1 c1 0
a2 b1 c2 0
a2 b1 c3 1
a2 b2 c1 0.2
a2 b2 c2 0.3
a2 b2 c3 0.5

Ï ENC1 will generate 9 parameter
variables

Ï Group parameters that are equal
and use a unique parameter
variable by group

a1 ∧b1 ∧c2 → θc1

a1 ∧b1 ∧c3 → θc1

a1 ∧b2 ∧c3 → θc1

a2 ∧b2 ∧c3 → θc1

with w(θc1)= 0.5
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Decomposability

Ï Model counters typically look for dependent components
Ï The translation into CNF may obfuscate the recognition of

independent components

A B C P(c|a,b)
a1 b1 c1 0.25
a1 b1 c2 0.25
a1 b2 c1 0.25
a1 b2 c2 0.25
a2 b1 c1 0
a2 b1 c2 0.5
a2 b2 c1 0.2
a2 b2 c2 0.3

a1 ∧b1 ∧c1 → θc1 ¬a2 ∨¬b1 ∨¬c1

a1 ∧b1 ∧c2 → θc1 a2 ∧b1 ∧c2 → θc2

a1 ∧b2 ∧c1 → θc1 a2 ∧b2 ∧c1 → θc3

a1 ∧b2 ∧c2 → θc1 a2 ∧b2 ∧c2 → θc4

B E D P(d |b,e)
b1 e1 d1 0.2
b1 e1 d2 0.3
b1 e2 d1 0.1
b1 e2 d2 0.4
b2 e1 d1 0.1
b2 e1 d2 0.4
b2 e2 d1 0.2
b2 e2 d2 0.3

b1 ∧e1 ∧d1 → θd5 b2 ∧e1 ∧d1 → θd7

b1 ∧e1 ∧d2 → θd6 b2 ∧e1 ∧d2 → θd8

b1 ∧e2 ∧d1 → θd7 b2 ∧e2 ∧d1 → θd5

b1 ∧e2 ∧d2 → θd8 b2 ∧e2 ∧d2 → θd6

Ï Computing implicants before translating into CNF promotes
the identification of independent components
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Chavira and Darwiche’s Translation

Cloudy

Sprinkler

C P(C)
0 0.5 θc1
1 0.5

S C P(S |C)
0 0 0.5 θs1
1 0 0.5
0 1 0.9 θs3
1 1 0.1 θs4

{c0,c1}

{s0,s1}

c0 ∨c1
c0 ∨c1

s0 ∨s1
s0 ∨s1

>→ θc1

c0 → θs1
s0 ∧c1 → θs3
s1 ∧c1 → θs4

A more compact encoding of tables:

Ï Group rows with the same probability, and compress them (into a
prime DNF);

Ï Use implications instead of equivalences.
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Our Results: An Improved Translation

Two key ideas:
Ï Use a log-encoding of indicator variables
Ï Use a scaling factor w0 which implicitly stores one group per

table
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Log Encoding

Ï In the log encoding domains are represented with m = dlog2(d)e
propositional variables

Ï Each of the 2m combinations represents a possible assignment
Ï Introduce less indicator variables than the direct encoding

3 propositional variables {c2,c1,c0}

green

0 ¬c2 ∧¬c1 ∧¬c0

blue

1 ¬c2 ∧¬c1 ∧c0

gray

2 ¬c2 ∧c1 ∧¬c0

purple

3 ¬c2 ∧c1 ∧c0

black

4 c2 ∧¬c1 ∧¬c0

white

5 c2 ∧¬c1 ∧c0

Ï We need to exclude the values in excess with a logarithmic
number of clauses

¬c2 ∨¬c1 ∨¬c0 ¬c2 ∨¬c1 ∨c0

Ï Domains having 2d values don’t need indicator clauses!
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Scaling Factor

Ï For each instantiation, exactly one parameter variable will be
assigned to true

Ï Then, we can keep for each CPT R one parameter variable θR

implicit

A B C P(C|A,B)

0.3
θc1

0 0 0 0.2

0.2
0.3=w(θc1)

0 0 1 0.3
0 1 0 0.3

θc1

0 1 1 0.2

0.2
0.3=w(θc1)

1 0 0 0
1 0 1 0

θc2

1 1 0 0.6

0.6
0.3=w(θc2)

θc3

1 1 1 0.4

0.4
0.3=w(θc3)

a0 ∧b0 ∧c0 → θc1 a0 ∧b1 ∧c1 → θc1

a1 ∧b1 ∧c0 → θc2 a1 ∧b1 ∧c1 → θc3

Ï To make the translation faithful we now assign a specific weight
to the negative parameter literals: w(¬θij)= 1−w(θij)
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Running Example

Cloudy

Sprinkler

C P(C)
0 0.5
1 0.5

{c}

{s}

no need!

no need!

S C P(S |C)
0 0 0.5
1 0 0.5
0 1 0.9 θs3
1 1 0.1 θs4

Ï The weighted model count of (F ,w ,w0) becomes:

W (F)=w0

( ∑
v∈{0,1}n,v |=F

W (v)

)
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Running Example

Cloudy
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C P(C)
0 0.5
1 0.5

{c}

{s}

no need!

no need!

no need!

s∧c → θs3
s∧c → θs4

w0 = ws0 × wc0

S C P(S |C)
0 0 0.5
1 0 0.5
0 1 0.9 w(θs3)= 0.9/0.5

1 1 0.1 w(θs4)= 0.1/0.5

Ï The weighted model count of (F ,w ,w0) becomes:

W (F)=w0

( ∑
v∈{0,1}n,v |=F

W (v)

)
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Our Results: An Improved Translation

Theoretical Properties
Let τ be the Chavira and Darwiche’s translation, and let τ∗ be our
improvement. Then, for any Bayesian network N,

Ï the number of variables in τ∗(N) is smaller than the number of
variables in τ(N),

Ï the size of τ∗(N) is smaller than the size of τ(N), and
Ï the translation τ∗ is faithful:

W [τ∗(x)]=PN(x), for every variable instantiation x

Contrastingly, τ is not faithful (a DNNF minimization is required
to achieve this).

Note: The translations τ and τ∗ can easily be extended to Markov
networks, where W [τ(N)] captures the partition constant.
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Our Results: An Improved Translation

Experimental Setup

Ï 1452 graphical models
Ï 6 data sets: Diagnose (100), UAI (377), Grids (320), Pedigree

(22), Promedas (238), Relational (395)
Ï Cluster of Quad-core Intel XEON X5550 with 32GiB of memory

on Linux CentOS
Ï Time-out =900s (including the translation phase, and the

minimization phase for τ)
Ï Memory-out = 8 GiB
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Our Results: An Improved Translation
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d

τ4+c2d+minimization
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Grids
Diagnose

UAI
Relational

τ + C2D + minimization

Compilation times

τ
∗

+
C

2D
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τ4+c2d+minimization
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Pedigree

Grids
Diagnose

UAI
Relational

τ + C2D + minimization

τ
∗

+
C

2D

Sizes of compiled forms

Experimental Results: τ∗ versus τ
Evaluate the computational benefits offered by the new translation τ∗

method, with respect to Chavira and Darwiche’s method τ (+
minimization). Both methods are used upstream to C2D.
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Sizes of compiled forms

Experimental Results: τ∗+ C2D versus ACE
Evaluate the computational benefits offered by the new translation τ∗

(used upstream to C2D), with respect to ACE (used with
-forceC2d), a compiler dedicated to graphical models.
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Conclusions

Summary

Ï Weighted model counting is a promising approach for solving
the probabilistic inference problem.

Ï We defined a new translation method based on two simple
ideas;

Ï τ∗ is faithful
Ï In practice τ∗ + C2D proves typically better than τ + C2D +

minimization,
Ï In practice τ∗ + C2D proves typically better than ACE as to the

sizes of the compiled forms.

Perspectives
Many questions remain open in reducing probabilistic inference to
WMC. In particular, various translations can be devised:

Ï targetting other graphical models (relational, dynamic BNs, etc.),
Ï targetting other compiled forms (SDDs, etc.).
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