An Improved CNF Encoding Scheme for Probabilistic Inference

Jean-Marie Lagniez

CRIL, U. Artois \& CNRS France

4
UNIVERSITÉ D'ARTOIS

Overview

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

Probabilistic Inference

Probabilistic Inference

- Observations:
- It is cloudy
- The grass is wet
- ...

Probabilistic Inference

- Observations:
- It is cloudy
- The grass is wet
- ...

day	cloudy	wet grass
1	1	1
2	1	1
3	1	0
4	0	0

$\mathbb{P}($ wet grass \mid cloudy $)=\frac{2}{3}$

Probabilistic Inference

- Observations:
- It is cloudy
- The grass is wet
- ...

day	cloudy	wet grass
1	1	1
2	1	1
3	1	0
4	0	0

$\mathbb{P}($ wet grass \mid cloudy $)=\frac{2}{3}$

- Modelling a problem using a joint distribution on a set of random variables

Probabilistic Inference

- An instantiation of \mathbf{X} assigns each $X \in \mathbf{X}$ of some value in the domain (finite) of X
- A joint distribution over \mathbf{X} is a function \mathbb{P} that maps each instantiation of \mathbf{X} to $[0,1]$
- Evidence is similar to instantiation but only some of the variables of \mathbf{X} are assigned

Probabilistic Inference: example

Cloudy	Rain	Sprinkler	Wet	\mathbb{P}
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

Probabilistic Inference: example

Cloudy	Rain	Sprinkler	Wet	\mathbb{P}
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

- probability of instantiation w

$$
\mathbb{P}(C=0, R=1, S=0, W=1)=\mathbb{P}\left(C_{0}, R_{1}, S_{0}, W_{1}\right)=0.0225
$$

Probabilistic Inference: example

Cloudy	Rain	Sprinkler	Wet	\mathbb{P}
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

- probability of instantiation w

$$
\mathbb{P}(C=0, R=1, S=0, W=1)=\mathbb{P}\left(C_{0}, R_{1}, S_{0}, W_{1}\right)=0.0225
$$

- probability of evidence e

$$
\mathbb{P}\left(S_{0}, W_{1}\right)=0+0.0225+0+0.324=0.3465
$$

Probabilistic Inference: example

Cloudy	Rain	Sprinkler	Wet	\mathbb{P}
0	0	0	0	0.225
0	0	0	1	0
0	0	1	0	0.45
0	0	1	1	0.18
0	1	0	0	0.0025
0	1	0	1	0.0225
0	1	1	0	0
0	1	1	1	0.025
1	0	0	0	0.09
1	0	0	1	0
1	0	1	0	0.002
1	0	1	1	0.008
1	1	0	0	0.036
1	1	0	1	0.324
1	1	1	0	0
1	1	1	1	0.04

- The size of the joint distribution is exponential in the number of variables!
- probability of instantiation w

$$
\mathbb{P}(C=0, R=1, S=0, W=1)=\mathbb{P}\left(C_{0}, R_{1}, S_{0}, W_{1}\right)=0.0225
$$

- probability of evidence e

$$
\mathbb{P}\left(S_{0}, W_{1}\right)=0+0.0225+0+0.324=0.3465
$$

Graphical Models

Graphical models are a well-studied framework for representing high-dimensional probability distributions, with a wide spectrum of applications.

Overview

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

Graphical Models

- Graphical models are commonly separated into:
- directed models (a.k.a Bayesian networks), with conditional probability tables (CPTs) over a directed (acyclic) graph,
- undirected models (a.k.a. Markov networks), with energy functions over the cliques of an undirected graph.

Bayesian network

The semantics of Bayesian networks implies the following joint distribution:

$$
\mathbb{P}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i} \mathbb{P}\left(x_{i} \mid u_{i}\right)
$$

Bayesian network

The semantics of Bayesian networks implies the following joint distribution:

$$
\mathbb{P}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i} \mathbb{P}\left(x_{i} \mid u_{i}\right)
$$

Probabilistic Inference

Product rule: $\mathbb{P}(A, X)=\mathbb{P}(A \mid X) \times \mathbb{P}(X)$

$$
\mathbb{P}\left(w_{1} \mid c_{1}\right)=\frac{\mathbb{P}\left(w_{1}, c_{1}\right)}{\mathbb{P}\left(c_{1}\right)}
$$

Bayes' rule: $\mathbb{P}(A \mid X)=\frac{\mathbb{P}(X \mid A) \times \mathbb{P}(A)}{\mathbb{P}(X)}$ $\mathbb{P}\left(c_{1} \mid s_{1}\right)=\frac{\mathbb{P}\left(s_{1}, c_{1}\right) \times \mathbb{P}\left(s_{1}\right)}{\mathbb{P}\left(c_{1}\right)}$

- Probabilistic inference is a basic task for handling more complex queries:
- Conditional probabilities: evaluating the probability of an event \boldsymbol{y} given an evidence \boldsymbol{x}
- Most probable explanations: given an evidence \boldsymbol{x}, find an assignment \boldsymbol{y} over the complementary variables that maximizes $\mathbb{P}(\boldsymbol{y} \mid \boldsymbol{x})$

Graphical Models

- Unfortunately, probabilistic inference is \#P-complete in graphical models, including both Bayesian networks and Markov networks.

Weighted Model Counting

Yet, in AI, a great deal of effort has been spent in solving instances of the \#SAT problem, which is to count the number of models of an input CNF formula F.

- Search-based methods: Cachet, SharpSAT, etc.
- Compilation-based methods: C2D, SDD, ..., targetting a class of Boolean circuits (ex: DNNF) for which model counting is solvable in polynomial time

Weighted Model Counting

Yet, in AI, a great deal of effort has been spent in solving instances of the \#SAT problem, which is to count the number of models of an input CNF formula F.

- Search-based methods: Cachet, SharpSAT, etc.
- Compilation-based methods: C2D, SDD, ..., targetting a class of Boolean circuits (ex: DNNF) for which model counting is solvable in polynomial time

Most of these methods can handle weighted \#SAT instances, in which the literals of the input formula are associated with weights.

Overview

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

Weighted CNF Formula

- Let $V=\left\{v_{1}, \cdots, v_{n}\right\}$ be a set of Boolean variables.
- Let $L=\left\{v_{i}, \bar{v}_{i} \mid v_{i} \in V\right\}$ be the set of literals over V.
- A wCNF formula over V is a pair (F, w) such that:
- F is a conjunction of clauses,
- w is a map from L to \mathbb{Q} (i.e. a weighting of literals)

Weighted Model Counting

- The weight of a variable assignment $\boldsymbol{v} \in\{0,1\}^{n}$ is the product of weights of literals which are true in \boldsymbol{v} :

$$
W(\boldsymbol{v})=\prod_{\ell \in L, \boldsymbol{v} \mid=\ell} w(\ell)
$$

Weighted Model Counting

- The weight of a variable assignment $\boldsymbol{v} \in\{0,1\}^{n}$ is the product of weights of literals which are true in \boldsymbol{v} :

$$
W(\boldsymbol{v})=\prod_{\ell \in L, \boldsymbol{v} \mid=\ell} w(\ell)
$$

- The weighted model count of a wCNF formula is the sum of weights of the models of F :

$$
W(F)=\sum_{\boldsymbol{v} \in\{0,1\}^{n}, \boldsymbol{v} \mid=F} W(\boldsymbol{v})
$$

Weighted Model Counting

So ... Can we reduce the problem of probabilistic inference to Weighted Model Counting?

Weighted Model Counting

So ... Can we reduce the problem of probabilistic inference to Weighted Model Counting?

Yes! The idea is to find a translation function τ mapping

- any graphical model (Bayes or Markov net) N to a weighted CNF formula $\tau(N)$, and
- any partial assignment \boldsymbol{x} to a term $\tau(\boldsymbol{x})$,
such that

$$
\mathbb{P}_{N}(\boldsymbol{x})=\frac{W[\tau(N) \wedge \tau(x)]}{W[\tau(N)]}
$$

where $W[\tau(N)]$ is the partition constant (= 1 for BNs).

Overview

Probabilistic Graphical Models

Bayesian Network

Weighted Model Counting

Bayesian Network Translations

ENC1 [Darwiche, KR'02]

C	$\mathbb{P}(C)$
0	0.5
1	0.5

- An indicator variable $v_{i j}$ for each random variable X_{i} and domain value $j \in D\left(X_{i}\right)$

ENC1 [Darwiche, KR'02]

C	$\mathbb{P}(C)$
0	0.5
1	0.5

- An indicator variable $v_{i j}$ for each random variable X_{i} and domain value $j \in D\left(X_{i}\right)$
- A set of indicator clauses for each random variable X_{i} (direct encoding)

ENC1 [Darwiche, KR’02]

\boldsymbol{C}	$\mathbb{P}(\boldsymbol{C})$
0	0.5
1	$\theta_{C 1}$
1	0.5
$\theta_{c 2}$	

- An indicator variable $v_{i j}$ for each random variable X_{i} and domain value $j \in D\left(X_{i}\right)$
- A set of indicator clauses for each random variable X_{i} (direct encoding)
- A parameter variable $\theta_{\text {ir }}$ for each row r in the table of X_{i}, and a weight $w\left(\theta_{i r}\right)=\mathbb{P}\left(x_{i} \mid \boldsymbol{X}_{r}\right)$

ENC1 [Darwiche, KR'02]

$$
\begin{aligned}
& c_{0} \leftrightarrow \theta_{c 1} \\
& c_{1} \leftrightarrow \theta_{c 2}
\end{aligned}
$$

\boldsymbol{C}	$\mathbb{P}(\boldsymbol{C})$
0	0.5
1	$\theta_{C 1}$
1	0.5

$$
\begin{aligned}
& s_{0} \wedge c_{0} \leftrightarrow \theta_{s 1} \\
& s_{1} \wedge c_{0} \leftrightarrow \theta_{s 2} \\
& s_{0} \wedge c_{1} \leftrightarrow \theta_{s 3} \\
& s_{1} \wedge c_{1} \leftrightarrow \theta_{s 4}
\end{aligned}
$$

S	C	$\mathbb{P}(S \mid C)$
0	0	0.5
1	0	0.5
0	$\theta_{s 1}$	
0	1	$\theta_{s 2}$
1	1	0.9
$\theta_{s 3}$		
	0.1	$\theta_{s 4}$

- An indicator variable $v_{i j}$ for each random variable X_{i} and domain value $j \in D\left(X_{i}\right)$
- A set of indicator clauses for each random variable X_{i} (direct encoding)
- A parameter variable $\theta_{\text {ir }}$ for each row r in the table of X_{i}, and a weight $w\left(\theta_{\text {ir }}\right)=\mathbb{P}\left(x_{i} \mid \boldsymbol{X}_{r}\right)$
- A set of equivalences describing the semantics of each row in the table of X_{i}

Local Structure

- In practice, variables are not necessary binary and CPTs can be quite large

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0
a_{1}	b_{1}	c_{2}	0.5
a_{1}	b_{1}	c_{3}	0.5
a_{1}	b_{2}	c_{1}	0.2
a_{1}	b_{2}	c_{2}	0.3
a_{1}	b_{2}	c_{3}	0.5
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0
a_{2}	b_{1}	c_{3}	1
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3
a_{2}	b_{2}	c_{3}	0.5

- Thus, the generated CNF encoding can be large, challenging state-of-the-art weighted model counters

Remove Inconsistent Assignments

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0
a_{1}	b_{1}	c_{2}	0.5
a_{1}	b_{1}	c_{3}	0.5
a_{1}	b_{2}	c_{1}	0.2
a_{1}	b_{2}	c_{2}	0.3
a_{1}	b_{2}	c_{3}	0.5
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0
a_{2}	b_{1}	c_{3}	1
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3
a_{2}	b_{2}	c_{3}	0.5

Remove Inconsistent Assignments

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0
a_{1}	b_{1}	c_{2}	0.5
a_{1}	b_{1}	c_{3}	0.5
a_{1}	b_{2}	c_{1}	0.2
a_{1}	b_{2}	c_{2}	0.3
a_{1}	b_{2}	c_{3}	0.5
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0
a_{2}	b_{1}	c_{3}	1
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3
a_{2}	b_{2}	c_{3}	0.5

- The weight of a model is obtained by multiplying the weights of its positive parameters
- Then, all models which contain a positive parameter with a weight of 0 can be removed

Remove Inconsistent Assignments

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0
a_{1}	b_{1}	c_{2}	0.5
a_{1}	b_{1}	c_{3}	0.5
a_{1}	b_{2}	c_{1}	0.2
a_{1}	b_{2}	c_{2}	0.3
a_{1}	b_{2}	c_{3}	0.5
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0
a_{2}	b_{1}	c_{3}	1
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3
a_{2}	b_{2}	c_{3}	0.5

- The weight of a model is obtained by multiplying the weights of its positive parameters
- Then, all models which contain a positive parameter with a weight of 0 can be removed

$$
\neg a_{1} \vee \neg b_{1} \vee \neg c_{1} \quad \neg a_{2} \vee \neg b_{1} \vee \neg c_{1} \quad \neg a_{2} \vee \neg b_{1} \vee \neg c_{2}
$$

Equal Parameters

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0
a_{1}	b_{1}	c_{2}	0.5
a_{1}	b_{1}	c_{3}	0.5
a_{1}	b_{2}	c_{1}	0.2
a_{1}	b_{2}	c_{2}	0.3
a_{1}	b_{2}	c_{3}	0.5
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0
a_{2}	b_{1}	c_{3}	1
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3
a_{2}	b_{2}	c_{3}	0.5

Equal Parameters

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0
a_{1}	b_{1}	c_{2}	0.5
a_{1}	b_{1}	c_{3}	0.5
a_{1}	b_{2}	c_{1}	0.2
a_{1}	b_{2}	c_{2}	0.3
a_{1}	b_{2}	c_{3}	0.5
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0
a_{2}	b_{1}	c_{3}	1
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3
a_{2}	b_{2}	c_{3}	0.5

- ENC1 will generate 9 parameter variables
- Group parameters that are equal and use a unique parameter variable by group

$$
\begin{aligned}
& a_{1} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 1} \\
& a_{1} \wedge b_{1} \wedge c_{3} \rightarrow \theta_{c 1} \\
& a_{1} \wedge b_{2} \wedge c_{3} \rightarrow \theta_{c 1} \\
& a_{2} \wedge b_{2} \wedge c_{3} \rightarrow \theta_{c 1}
\end{aligned} \quad \text { with } w\left(\theta_{c 1}\right)=0.5
$$

Decomposability

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.25
a_{1}	b_{2}	c_{1}	0.25
a_{1}	b_{2}	c_{2}	0.25
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0.5
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3

B	E	D	$\mathbb{P}(d \mid b, e)$
b_{1}	e_{1}	d_{1}	0.2
b_{1}	e_{1}	d_{2}	0.3
b_{1}	e_{2}	d_{1}	0.1
b_{1}	e_{2}	d_{2}	0.4
b_{2}	e_{1}	d_{1}	0.1
b_{2}	e_{1}	d_{2}	0.4
b_{2}	e_{2}	d_{1}	0.2
b_{2}	e_{2}	d_{2}	0.3

$$
\begin{array}{ll}
a_{1} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 1} & \neg a_{2} \vee \neg b_{1} \vee \neg c_{1} \\
a_{1} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 1} & a_{2} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 2} \\
a_{1} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 1} & a_{2} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 3} \\
a_{1} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 1} & a_{2} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 4}
\end{array}
$$

$$
b_{1} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 5} \quad b_{2} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 7}
$$

$$
b_{1} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 6} \quad b_{2} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 8}
$$

$$
b_{1} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 7} \quad b_{2} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 5}
$$

$$
b_{1} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 8} \quad b_{2} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 6}
$$

Decomposability

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.25
a_{1}	b_{2}	c_{1}	0.25
a_{1}	b_{2}	c_{2}	0.25
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0.5
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3

B	E	D	$\mathbb{P}(d \mid b, e)$
b_{1}	e_{1}	d_{1}	0.2
b_{1}	e_{1}	d_{2}	0.3
b_{1}	e_{2}	d_{1}	0.1
b_{1}	e_{2}	d_{2}	0.4
b_{2}	e_{1}	d_{1}	0.1
b_{2}	e_{1}	d_{2}	0.4
b_{2}	e_{2}	d_{1}	0.2
b_{2}	e_{2}	d_{2}	0.3

$$
\begin{array}{llll}
a_{1} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 1} & \neg a_{2} \vee \neg b_{1} \vee \neg c_{1} & b_{1} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 5} & b_{2} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 7} \\
a_{1} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 1} & a_{2} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 2} & b_{1} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 6} & b_{2} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 8} \\
a_{1} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 1} & a_{2} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 3} & b_{1} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 7} & b_{2} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 5} \\
a_{1} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 1} & a_{2} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 4} & b_{1} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 8} & b_{2} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 6}
\end{array}
$$

- Computing implicants before translating into CNF promotes the identification of independent components

Decomposability

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.25
a_{1}	b_{2}	c_{1}	0.25
a_{1}	b_{2}	c_{2}	0.25
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0.5
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3

B	E	D	$\mathbb{P}(d \mid b, e)$
b_{1}	e_{1}	d_{1}	0.2
b_{1}	e_{1}	d_{2}	0.3
b_{1}	e_{2}	d_{1}	0.1
b_{1}	e_{2}	d_{2}	0.4
b_{2}	e_{1}	d_{1}	0.1
b_{2}	e_{1}	d_{2}	0.4
b_{2}	e_{2}	d_{1}	0.2
b_{2}	e_{2}	d_{2}	0.3

$$
\begin{array}{llll}
a_{1} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 1} & \neg a_{2} \vee \neg b_{1} \vee \neg c_{1} & b_{1} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 5} & b_{2} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 7} \\
a_{1} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 1} & a_{2} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 2} & b_{1} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 6} & b_{2} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 8} \\
a_{1} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 1} & a_{2} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 3} & b_{1} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 7} & b_{2} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 5} \\
a_{1} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 1} & a_{2} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 4} & b_{1} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 8} & b_{2} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 6}
\end{array}
$$

- Computing implicants before translating into CNF promotes the identification of independent components

Decomposability

- Model counters typically look for dependent components
- The translation into CNF may obfuscate the recognition of independent components

A	B	C	$\mathbb{P}(c \mid a, b)$
a_{1}	b_{1}	c_{1}	0.25
a_{1}	b_{1}	c_{2}	0.25
a_{1}	b_{2}	c_{1}	0.25
a_{1}	b_{2}	c_{2}	0.25
a_{2}	b_{1}	c_{1}	0
a_{2}	b_{1}	c_{2}	0.5
a_{2}	b_{2}	c_{1}	0.2
a_{2}	b_{2}	c_{2}	0.3

B	E	D	$\mathbb{P}(d \mid b, e)$
b_{1}	e_{1}	d_{1}	0.2
b_{1}	e_{1}	d_{2}	0.3
b_{1}	e_{2}	d_{1}	0.1
b_{1}	e_{2}	d_{2}	0.4
b_{2}	e_{1}	d_{1}	0.1
b_{2}	e_{1}	d_{2}	0.4
b_{2}	e_{2}	d_{1}	0.2
b_{2}	e_{2}	d_{2}	0.3

$$
\begin{array}{llll}
a_{1} \rightarrow \theta_{c 1} & \neg a_{2} \vee \neg b_{1} \vee \neg c_{1} & b_{1} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 5} & b_{2} \wedge e_{1} \wedge d_{1} \rightarrow \theta_{d 7} \\
& a_{2} \wedge b_{1} \wedge c_{2} \rightarrow \theta_{c 2} & b_{1} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 6} & b_{2} \wedge e_{1} \wedge d_{2} \rightarrow \theta_{d 8} \\
& a_{2} \wedge b_{2} \wedge c_{1} \rightarrow \theta_{c 3} & b_{1} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 7} & b_{2} \wedge e_{2} \wedge d_{1} \rightarrow \theta_{d 5} \\
& a_{2} \wedge b_{2} \wedge c_{2} \rightarrow \theta_{c 4} & b_{1} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 8} & b_{2} \wedge e_{2} \wedge d_{2} \rightarrow \theta_{d 6}
\end{array}
$$

- Computing implicants before translating into CNF promotes the identification of independent components

Chavira and Darwiche's Translation

$$
\mathrm{T} \rightarrow \theta_{c 1}
$$

$c_{0} \rightarrow \theta_{s 1}$
$s_{0} \wedge c_{1} \rightarrow \theta_{s 3}$
$s_{1} \wedge c_{1} \rightarrow \theta_{s 4}$

C	$\mathbb{P}(C)$
0	0.5
1	0.5

S	C	$\mathbb{P}(S \mid C)$
0	0	0.5
1	0	0.5
	$\theta_{S 1}$	
0	1	0.9
1	1	0.1

A more compact encoding of tables:

- Group rows with the same probability, and compress them (into a prime DNF);
- Use implications instead of equivalences.

Our Results: An Improved Translation

Two key ideas:

- Use a log-encoding of indicator variables
- Use a scaling factor w_{0} which implicitly stores one group per table

Log Encoding

- In the log encoding domains are represented with $m=\left\lceil\log _{2}(d)\right\rceil$ propositional variables
- Each of the 2^{m} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

Log Encoding

- In the log encoding domains are represented with $m=\left\lceil\log _{2}(d)\right\rceil$ propositional variables
- Each of the 2^{m} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

green
blue
gray
purple
black
white

Log Encoding

- In the log encoding domains are represented with $m=\left\lceil\log _{2}(d)\right\rceil$ propositional variables
- Each of the 2^{m} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

green
blue
gray
purple
black
white

Log Encoding

- In the log encoding domains are represented with $m=\left\lceil\log _{2}(d)\right\rceil$ propositional variables
- Each of the 2^{m} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

3 propositional variables $\left\{c_{2}, c_{1}, c_{0}\right\}$

| green 0
 blue 1
 gray 2
 purple 3
 black 4
 white 5 l |
| :---: | :---: |

Log Encoding

- In the log encoding domains are represented with $m=\left\lceil\log _{2}(d)\right\rceil$ propositional variables
- Each of the 2^{m} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

3 propositional variables $\left\{C_{2}, c_{1}, c_{0}\right\}$

green	0	$\neg c_{2} \wedge \neg c_{1} \wedge \neg c_{0}$
blue	1	$\neg c_{2} \wedge \neg c_{1} \wedge c_{0}$
gray	2	$\neg c_{2} \wedge c_{1} \wedge \neg c_{0}$
purple	3	$\neg c_{2} \wedge c_{1} \wedge c_{0}$
black	4	$c_{2} \wedge \neg c_{1} \wedge \neg c_{0}$
white	5	$c_{2} \wedge \neg c_{1} \wedge c_{0}$

Log Encoding

- In the log encoding domains are represented with $m=\left\lceil\log _{2}(d)\right\rceil$ propositional variables
- Each of the 2^{m} combinations represents a possible assignment
- Introduce less indicator variables than the direct encoding

3 propositional variables $\left\{c_{2}, c_{1}, c_{0}\right\}$

green	0	$\neg c_{2} \wedge \neg c_{1} \wedge \neg c_{0}$
blue	1	$\neg c_{2} \wedge \neg c_{1} \wedge c_{0}$
gray	2	$\neg c_{2} \wedge c_{1} \wedge \neg c_{0}$
purple	3	$\neg c_{2} \wedge c_{1} \wedge c_{0}$
black	4	$c_{2} \wedge \neg c_{1} \wedge \neg c_{0}$
white	5	$c_{2} \wedge \neg c_{1} \wedge c_{0}$

- We need to exclude the values in excess with a logarithmic number of clauses

$$
\neg C_{2} \vee \neg C_{1} \vee \neg C_{0} \quad \neg C_{2} \vee \neg C_{1} \vee c_{0}
$$

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

A	B	C	$\mathbb{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$
0	0	0	0.2
0	0	1	0.3
0	1	0	0.3
0	1	1	0.2
1	0	0	0
1	0	1	0
1	1	0	0.6
1	1	1	0.4

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

A	B	C	$\mathbb{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$
0	0	0	0.2
0	0	1	0.3
0	1	0	0.3
0	1	1	0.2
1	0	0	0
1	0	1	0
1	1	0	0.6
1	1	1	0.4

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

A	B	C	$\mathbb{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$
0	0	0	0.3
0	0	1	0.3
0	1	0	0.3
0	1	1	0.2
1	0	0	0
1	0	1	0
1	1	0	0.6
1	1	1	0.4

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

A	B	C	$\mathbb{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$
0	0	0	0.3
0	0	1	0.2
0	0.2		
0.3			
0	1	0	0.3
0	1	1	0.2
1	0	0	0
1	0	1	0
1	1	0	0.6
1	1	1	0.4

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

A	B	C	$\mathbb{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$	0.3
0	0	0	0.2	$\frac{0.2}{0.3}$
0	0	1	0.3	
0	1	0	0.3	
0	1	1	0.2	$\frac{0.2}{0.3}$
1	0	0	0	
1	0	1	0	
1	1	0	0.6	$\frac{0.6}{0.3}$
1	1	1	0.4	$\frac{0.4}{0.3}$

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

	A	B	C	$\mathbb{P}(C \mid A, B)$	$\begin{aligned} & 0.3 \\ & \frac{0.2}{0.3}=w\left(\theta_{c 1}\right) \end{aligned}$	
$\theta_{c 1}$	0	0	0	0.2		
	0	0	1	0.3		
	0	1	0	0.3		
$\theta_{c 1}$	0	1	1	0.2	$\frac{0.2}{0.3}=w\left(\theta_{c 1}\right)$	
	1	0	0	0		
	1	0	1	0		
$\theta_{c 2}$	1	1	0	0.6	$\frac{0.6}{0.3}=w\left(\theta_{c 2}\right)$	
$\theta_{\text {c3 }}$	1	1	1	0.4	$\frac{0.4}{0.3}=w\left(\theta_{c 3}\right)$	
$\begin{array}{ll} a_{0} \wedge b_{0} \wedge c_{0} \rightarrow \theta_{c 1} & a_{0} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 1} \\ a_{1} \wedge b_{1} \wedge c_{0} \rightarrow \theta_{c 2} & a_{1} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 3} \end{array}$						

Scaling Factor

- For each instantiation, exactly one parameter variable will be assigned to true
- Then, we can keep for each CPT R one parameter variable θ_{R} implicit

	A	B	C	$\mathbb{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$	$\begin{aligned} & 0.3 \\ & \frac{0.2}{0.3}=w\left(\theta_{c 1}\right) \end{aligned}$	
$\theta_{c 1}$	0	0	0	0.2		
	0	0	1	0.3		
	0	1	0	0.3		
$\theta_{c 1}$	0	1	1	0.2	$\frac{0.2}{0.3}=w\left(\theta_{c 1}\right)$	
	1	0	0	0		
	1	0	1	0		
θ_{02}	1	1	0	0.6	$\frac{0.6}{0.3}=w\left(\theta_{c 2}\right)$	
$\theta_{c 3}$	1	1	1	0.4	$\frac{0.4}{0.3}=w\left(\theta_{c 3}\right)$	
$\begin{array}{ll} a_{0} \wedge b_{0} \wedge c_{0} \rightarrow \theta_{c 1} & a_{0} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 1} \\ a_{1} \wedge b_{1} \wedge c_{0} \rightarrow \theta_{c 2} & a_{1} \wedge b_{1} \wedge c_{1} \rightarrow \theta_{c 3} \end{array}$						

- To make the translation faithful we now assign a specific weight to the negative parameter literals: $w\left(\neg \theta_{i j}\right)=1-w\left(\theta_{i j}\right)$

Running Example

C	$\mathbb{P}(C)$
0	0.5
1	0.5

no need!

S	C	$\mathbb{P}(S \mid C)$
0	0	0.5
1	0	0.5
0	1	0.9
1	1	0.1

no need!

Running Example

$$
w_{0}=w_{s 0} \times w_{c 0}
$$

no need!

C	$P(C)$
0	0.5
1	0.5

$\bar{s} \wedge c \rightarrow \theta_{s 3}$
$s \wedge c \rightarrow \theta_{s 4}$

S	C	$\mathbb{P}(S \mid C)$
0	0	0.5
1	0	0.5
0	1	0.9
1	$\theta_{s 3}$	
1	1	0.1

Running Example

$$
w_{0}=w_{s 0} \times w_{c 0}
$$

$\{c\}$
no need!

C	$P(C)$
0	0.5
1	0.5

no need!
no need!

- The weighted model count of $\left(F, w, w_{0}\right)$ becomes:

$$
W(F)=W_{0}\left(\sum_{\boldsymbol{v} \in\{0,1\}^{n}, \boldsymbol{v} \mid=F} W(\boldsymbol{v})\right)
$$

Our Results: An Improved Translation

Theoretical Properties

Let τ be the Chavira and Darwiche's translation, and let τ^{*} be our improvement. Then, for any Bayesian network N,

- the number of variables in $\tau^{*}(N)$ is smaller than the number of variables in $\tau(N)$,
- the size of $\tau^{*}(N)$ is smaller than the size of $\tau(N)$, and
- the translation τ^{*} is faithful:

$$
W\left[\tau^{*}(\boldsymbol{x})\right]=\mathbb{P}_{N}(\boldsymbol{x}), \text { for every variable instantiation } \boldsymbol{x}
$$

Contrastingly, τ is not faithful (a DNNF minimization is required to achieve this).

Our Results: An Improved Translation

Theoretical Properties

Let τ be the Chavira and Darwiche's translation, and let τ^{*} be our improvement. Then, for any Bayesian network N,

- the number of variables in $\tau^{*}(N)$ is smaller than the number of variables in $\tau(N)$,
- the size of $\tau^{*}(N)$ is smaller than the size of $\tau(N)$, and
- the translation τ^{*} is faithful:

$$
W\left[\tau^{*}(\boldsymbol{x})\right]=\mathbb{P}_{N}(\boldsymbol{x}) \text {, for every variable instantiation } \boldsymbol{x}
$$

Contrastingly, τ is not faithful (a DNNF minimization is required to achieve this).

Note: The translations τ and τ^{*} can easily be extended to Markov networks, where $W[\tau(N)]$ captures the partition constant.

Our Results: An Improved Translation

Experimental Setup

- 1452 graphical models
- 6 data sets: Diagnose (100), UAI (377), Grids (320), Pedigree (22), Promedas (238), Relational (395)
- Cluster of Quad-core Intel XEON X5550 with 32GiB of memory on Linux CentOS
- Time-out $=900$ s (including the translation phase, and the minimization phase for τ)
- Memory-out $=8$ GiB

Our Results: An Improved Translation

Compilation times

Experimental Results: τ^{*} versus τ
Evaluate the computational benefits offered by the new translation τ^{*} method, with respect to Chavira and Darwiche's method τ (+ minimization). Both methods are used upstream to C2D.

Our Results: An Improved Translation

Compilation times

Experimental Results: $\tau^{*}+$ C2D versus ACE

Evaluate the computational benefits offered by the new translation τ^{*} (used upstream to C2D), with respect to ACE (used with -forceC2d), a compiler dedicated to graphical models.

Conclusions

Summary

- Weighted model counting is a promising approach for solving the probabilistic inference problem.
- We defined a new translation method based on two simple ideas;
- τ^{*} is faithful
- In practice $\tau^{*}+$ C2D proves typically better than $\tau+\mathrm{C} 2 \mathrm{D}+$ minimization,
- In practice $\tau^{*}+$ C2D proves typically better than ACE as to the sizes of the compiled forms.

Conclusions

Summary

- Weighted model counting is a promising approach for solving the probabilistic inference problem.
- We defined a new translation method based on two simple ideas;
- τ^{*} is faithful
- In practice $\tau^{*}+$ C2D proves typically better than $\tau+\mathrm{C} 2 \mathrm{D}+$ minimization,
- In practice $\tau^{*}+$ C2D proves typically better than ACE as to the sizes of the compiled forms.

Perspectives

Many questions remain open in reducing probabilistic inference to WMC. In particular, various translations can be devised:

- targetting other graphical models (relational, dynamic BNs, etc.),
- targetting other compiled forms (SDDs, etc.).

An Improved CNF Encoding Scheme for Probabilistic Inference

Jean-Marie Lagniez

CRIL, U. Artois \& CNRS France

4
UNIVERSITÉ D'ARTOIS

