Lower bounds, December 08, 2017.

1 Parametrized problems and FPT Algorithms

Flum and Grohe, Parametrized Complexity Theory.

1.1 Preliminaries

Definition 1. • A parametrisation is a ptime computable function $k : \Sigma^* \to \mathbb{N}$.

• A parametrised problem is a pair (L, k) of $L \subseteq \Sigma^*$ and k a parametrisation.

Example 1. • SAT and the number of variables

- Clique (G, k) and k
- SAT and the number of variable per clauses...

Definition 2. • FPT-time algorithm wrt k is an algorithm that decides on input x if $x \in L$ and runs in time f(k(x))poly(|x|) for a computable function f.

• (L,k) is fixed parameter tractable *(FPT)* if there exists an FPT-time algorithm wrt k for (L,k)

Example 2.

SAT and number of variables co-example : colorability

1.2 Example : vertex covers

Definition 3. Let G = (V, E) be a graph. A vertex cover is a set $S \subseteq V$ such that for every $e \in E$, $S \cap e \neq \emptyset$.

Deciding given G and k if there exists a vertex cover of size $\leq k$ if a well-known NP-complete problem. However, it is FPT in k:

- If |E| = 0, return true.
- If k = 0, return false.
- Otherwise, choose $e = \{u, v\} \in E$. Return $VC(G \setminus \{u\}, k-1) \lor VC(G \setminus \{v\}, k-1)$.

At most 2^k calls of the function. And each call is polynomial in |G|.

Independent sets. Can we use this idea to detect independent sets in FPT time?

Definition 4. Let G = (V, E) be a graph. An independent set is a set $S \subseteq V$ such that for every $u, v \in S$, $\{u, v\} \notin E$.

Lemma 5. Let G = (V, E) be a graph and $S \subseteq V$. S is a vertex cover iff $V \setminus S$ is an independent set.

Previous algorithm gives an algorithm with runtime 2^{n-k} for Independent Sets. It is not FPT. But IS parametrized by n-k is FPT.

2 Treewidth

Give intuition: how to measure the "distance between a graph and a tree".

2.1 Definition and examples

Definition 6. A tree decomposition of a graph G = (V, E) is a tree T and a labelling $B_t \subseteq V$ for every $t \in V(T)$ such that:

- for every $x \in V$, $\{t \mid x \in B_t\}$ is connected,
- for every $e \in E$, there exists t such that $e \subseteq B_t$.

2.2 Treewidth of well-known graphs

Treewidth of trees.

Theorem 7. A graph is a forest if and only if it has treewidth 1.

Proof of the other way relies on:

Lemma 8. If $H \subseteq G$ then $tw(H) \leq tw(G)$.

Proof. Remove vertices of V(G) from a decomposition of G.

Treewidth of cycle. Cycle have treewidth 2.

Treewidth of clique. K_k is of treewidth k-1.

Project examples. Proof of the lower bounds:

Lemma 9. Let G be a graph and d be the minimal degree of its vertices. Then $tw(G) \ge d$.

Proof. Let T be a tree decomposition of G of treewidth k. We claim that there exists a vertex $v \in V$ of degree k. Indeed, let t be a leaf of T with father t'. If $B_t \subseteq B_{t'}$ then we can remove t from T and still have a tree decomposition of G of treewidth k. Do this until you cannot any more to compute a new tree decomposition T' of G of treewidth k. Now let t be a leaf of T' and father t'. By definition, there exists $x \in B_t \setminus B_{t'}$. Since t is a leaf, x only appear in B_t by connectivity. Thus, every edge $\{x, y\} \subseteq B_t$, ie the degree of x is $\leq k$.

Treewidth of grids.

Theorem 10. Let G be a $n \times m$ grid with $n \leq m$. Then $tw(G) \leq m$. And $tw(G) \geq m/3$.

3 Formulas of bounded treewidth

3.1 Graphs and formulas

Primal/Incidence graphs. On slides.

3.2 Primal treewidth

Solve #SAT for bounded primal treewidth.

Theorem 11. #SAT parametrised by ptw can be solved in FPT time. More precisely, we can count the number of solution of F in time $2^{O(k)} \cdot poly(|F|)$ where k = ptw(F).

Proof. Start from a tree decomposition T of the primal graph of F, root it in a node r. The bags of T are denoted by B_t . Remember that $|B_t| \le k + 1$.

Given $t \in T$, define T_t to be the tree rooted in t, V_t to be the variables of F appearing in T_t and F_t to be CNF formula whose clauses are clauses C of F such that $var(C) \subseteq V_t$. Observe that $F_r = F$.

We will compute #F by dynamic programming. For every t and $\tau : B_t \to \{0, 1\}$, we will compute $\#F_t[\tau]$. Observe that there is $|T| \cdot 2^{k+1}$ such values to compute.

We now explain how the dynamic programming works. If t is a leaf of the tree, then $\tau: B_t \to \{0, 1\}$ assigns all variables of F_t . Thus $\#F_t[\tau]$ is either 0 or 1.

Now let t be a vertex of t and t_1, t_2 its children. Observe that $V_{t_1} \cap V_{t_2} \subseteq B_t$. We thus have $\#F_t[\tau] = \#F_{t_1}[\tau_1] \cdot \#F_{t_2}[\tau_2]$ where $\tau_1 = \tau|_{V_1}$ and $\tau_2 = \tau|_{V_2}$.

We conclude by observing that $\#F[\tau_1] = \sum_{\mu:B_{t_1}\setminus B_t \to \{0,1\}} \#\tilde{F}_1[\tau_1 \cup \mu]$ (symmetrically for t_2) which all have been precomputed.

Change the proof to construct a d-DNNF:

- $F_t[\tau] = F_{t_1}[\tau_1] \wedge F_{t_2}[\tau_2]$ and this \wedge is decomposable,
- $F[\tau_1] = \bigvee_{\mu:B_t \setminus B_t \to \{0,1\}} F_1[\tau_1 \cup \mu]$ and this \vee is deterministic.

We can actually construct a dec-DNNF from this. Add decision tree for

$$\mu: B_{t_1} \setminus B_t \to \{0, 1\}.$$

Relation with c2d and d4.

- 3-splitting: syntactic decompositions (what Pierre was presenting)
- c2d starts from a tree decomposition of the formula and compile it (not exactly the same algorithm).

3.3 Incidence treewidth

Compile formulas of bounded incidence treewidth toward d-DNNF.

Theorem 12. Given F of itw k, we can construct in FPT time a d-DNNF of size $2^{O(k)} \cdot |F|$.

Proof. Start from a tree decomposition T of the primal graph of F, root it in a node r. The bags of T are denoted by B_t . Remember that $|B_t| \leq k + 1$. We denote by $var(B_t) = var(F) \cap B_t$ and $cla(B_t) = F \cap B_t$.

Given $t \in T$, define T_t to be the tree rooted in t, V_t to be the variables of F appearing in T_t and F_t to be CNF formula whose clauses are clauses of F appearing in T_t .

We will compute our d-DNNF for F by dynamic programming. For every t and $\tau : var(B_t) \to \{0, 1\}$ and $C \subseteq cla(F_t)$, we will compute a d-DNNF with a gate computing $(F_t \setminus C)[\tau] \land \bigwedge_{C \in \mathcal{C}} \neg C$.

4 Toward more general parameters

Slide with the parameters zoo!