FPT Algorithms for Knowledge Compilation

Florent Capelli

CRIStAL, Université de Lille \& Inria \& CNRS France

Research School on Knowledge Compilation, ENS Lyon, December $4^{\text {th }}-8^{\text {th }}$

Treewidth of grids

$x_{1,1}, x_{2,1}, x_{3,1}, x_{1,2}$

Treewidth of grids

$$
\begin{aligned}
& x_{1,1}, x_{2,1}, x_{3,1}, x_{1,2} \\
& x_{2,1}, x_{3,1}, x_{1,2}, x_{2,2}
\end{aligned}
$$

Treewidth of grids

Treewidth of grids

Treewidth of grids

Treewidth of grids

$\|$$\mid x_{1,1}, x_{2,1}, x_{3,1}, x_{1,2}$ $x_{2,1}, x_{3,1}, x_{1,2}, x_{2,2}$ $x_{3,1}, x_{1,2}, x_{2,2}, x_{3,2}$ $x_{1,2}, x_{2,2}, x_{3,2}, x_{1,3}$ $x_{2,2}, x_{3,2}, x_{1,3}, x_{2,3}$
$x_{3,2}, x_{1,3}, x_{2,3}, x_{3,3}$

Primal graph

Vertices are variables of the formula F.
Edge (x, y) iff x and y occur in the same clause.

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4} \vee \neg x_{5}\right) \wedge\left(x_{1} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{5} \vee \neg x_{7}\right)
$$

Incidence graph

By associating a graph to a formula:

Figure -
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4} \vee \neg x_{5}\right) \wedge\left(x_{1} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{5} \vee \neg x_{7}\right)$

Incidence graph

By associating a graph to a formula:

Figure -
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4} \vee \neg x_{5}\right) \wedge\left(x_{1} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{5} \vee \neg x_{7}\right)$

Structure of formulas

- Primal treewidth of $F: \operatorname{ptw}(F)$ (tw of the primal graph)
- Incidence treewidth of $F: \operatorname{itw}(F)$ (tw of the incidence graph).

Theorem

- $\operatorname{itw}(F) \leq p t w(F)+1$.
- There exists F_{n} with ptw $\left(F_{n}\right)=n$ and $\operatorname{itw}\left(F_{n}\right)=1$.

Incidence treewidth is strictly more general than primal treewidth. Let's sketch a proof on the blackboard.

Exploiting the structure of formulas

Warm up:
Theorem \#SAT parametrised by ptw is FPT.

More precisely, we can count the number of solution of F in time $2^{O(k)} \cdot$ poly $(|F|)$ where $k=\operatorname{ptw}(F)$.

Exploiting the structure of formulas

Warm up:
Theorem \#SAT parametrised by ptw is FPT.

More precisely, we can count the number of solution of F in time $2^{O(k)} \cdot \operatorname{poly}(|F|)$ where $k=\operatorname{ptw}(F)$.

Actually, our algorithm is a compilation algorithm to FPT-size decision-DNNF.

Let's do better

Theorem
A CNF formula F can be compiled into an FPT-size d-DNNF parametrised by itw.

Let's do better

Theorem
A CNF formula F can be compiled into an FPT-size d-DNNF parametrised by itw.

You want more?

Zoology!

