Introduction to Knowledge Compilation

Florent Capelli

CRIStAL, Université de Lille \& Inria \& CNRS France

Research School on Knowledge Compilation, ENS Lyon, December $4^{\text {th }}-8^{\text {th }}$

This research school

- Florent Capelli, Université Lille 3, CRIStAL, LINKS, florent.capelli@univ-lille3.fr
- Jean-Marie Lagniez, Université d’Artois, CRIL, lagniez@cril.fr
- Pierre Marquis, Université d'Artois, CRIL, marquis@cril.univ-artois.fr

Schedule

- Monday, Tuesday, Wednesday (Amphi B): 8:30-12:00, 13:30-15:45
- Thursday (Amphi B): 8:30-12:00, Free afternoon
- Friday: 8:30-12:00 (Amphi Schrödinger), 13:30-14:30 (Amphi B)

All info and material: http://researchers.lille.inria.fr/
~fcapelli/research_school.html

Content

- Today: introduction to the main concepts in knowledge compilation (FC).
- Tuesday: from SAT-solvers to compilers (JML+PM).
- Wednesday: preprocessing for model counting and compilation (JML+PM).
- Thursday: theoretical algorithms to compile efficiently (F.C).
- Friday: lower bounds (FC), Bayesian Networks (JML).

What is knowledge compilation?

A preprocessing to change the representation of the data to make it easier to analyse.

Log Tables

Log Tables

LOGARITHMIC TABLE

	0	1	2	3	4	5	6	7	8	9	MEAN DIFFERENCE								
											1	2	3	4	5	6	7	8	9
1.0	0.0000	0.0043	0.0086	0.0128	0.0170	0.0212	0.0253	0.0294	0.0334	0.0374	4	8	12	17	21	25	29	33	37
1.1	0.0414	0.0453	0.0492	0.0531	0.0569	0.0607	0.0645	0.0682	0.0719	0.0755	4	8	11	15	19	23	27	30	34
1.2	0.0792	0.0828	0.0864	0.0899	0.0934	0.0969	0.1004	0.1038	0.1072	0.1106	3	7	10	14	17	21	24	28	31
1.3	0.1139	0.1173	0.1206	0.1239	0.1271	0.1303	0.1335	0.1367	0.1399	0.1430	3	6	10	13	16	19	23	26	29
1.4	0.1461	0.1492	0.1523	0.1553	0.1584	0.1614	0.1644	0.1673	0.1703	0.1732	3	6	9	12	15	18	21	24	27
1.5	0.1761	0.1790	0.1818	0.1847	0.1875	0.1903	0.1931	0.1959	0.1987	0.2014	3	6	8	11	14	17	20	22	25
1.6	0.2041	0.2068	0.2095	0.2122	0.2148	0.2175	0.2201	0.2227	0.2253	0.2279	3	5	8	11	13	16	18	21	24
1.7	0.2304	0.2330	0.2355	0.2380	0.2405	0.2430	0.2455	0.2480	0.2504	0.2529	2	5	7	10	12	15	17	20	22
1.8	0.2553	0.2577	0.2601	0.2625	0.2648	0.2672	0.2695	0.2718	0.2742	0.2765	2	5	7	9	12	14	16	19	21
1.9	0.2788	0.281	0.2833	0.2856	0.2878	0.2900	0.2923	0.2945	0.2967	0.2989	2	4	7	9	11	13	16	18	20

$$
\begin{aligned}
\sqrt[5]{1234} & =10^{\frac{1}{5}\left(\log _{10}(1.234)+3\right)} \\
& \approx 10^{\frac{3.0913}{5}} \\
& \approx 10^{0.61826} \\
& \approx 4.1520
\end{aligned}
$$

by looking it in the table

 by looking it in an antilog table.
Demo

Processor config demo.

Constraints

How would you represent the constraints of the previous demo?

- List of constraints: natural but finding a good configuration is NP-hard.
- A better datastructure?
- Can you find the forced values quickly?
- The best price?
- Is your datastructure small enough?

Decision trees for the processor configuration

Decision trees for the processor configuration

Decision trees for the processor configuration

Flowcharts.

This week

To simplify, this week, we will mostly deal with Boolean functions.

Decision trees and branching programs

Problem: as many leaves as there are solutions.

Decision trees and branching programs

Problem: as many leaves as there are solutions.

Decision trees and branching programs

Problem: as many leaves as there are solutions.

FBDD finding a row of ones in a matrix

FBDD finding a row of ones in a matrix

FBDD finding a row of ones in a matrix

FBDD finding a row of ones in a matrix

Formal definition: branching programs

A branching program or binary decision diagram (BDD) C is a
DAG (directed acyclic graph) such that:

- it has one vertex with indegree 0 called the source
- vertices of outdegree 0 are call sinks and are labelled with constant 0 or 1
- other vertices, called decision nodes, are labelled by a variable x and have two outgoing edges: one labelled with 1 and the other with 0 .

Formal definition: accepted assignments

Let C be a BDD on variables X and $\tau: X \rightarrow\{0,1\}$. Let P_{τ} be the path in C defined as follows:

- start from the source
- when you are on a decision node testing x, take the edge labelled with $\tau(x)$
- repeat until you reach a sink.
τ is accepted by C if and only if P_{τ} reaches a 1 -sink.

Functional BDD

As we have defined BDD, it is not easy to decide if a given BDD can be satisfied as the same variable x may be tested twice on the same path.
A BDD C is functional (FBDD) if on every source-sink path each variable is tested at most once.

Counting with FBDD.

- Start from the leaves

Counting with FBDD.

- Start from the leaves

Counting with FBDD.

- Start from the leaves
- Recursively count the number of solutions of the branching program starting from each node.

Counting with FBDD.

Counting with FBDD.

- Start from the leaves
- Recursively count the number of solutions of the branching program starting from each node.
- Beware of the missing variables

Counting with FBDD.

- Start from the leaves
- Recursively count the number of solutions of the branching program starting from each node.
- Beware of the missing variables
- 169 solutions

Can we represent everything with a small FBDD?

No.

- $R O W_{n}$: is there a 1 -row in a $n \times n$ matrices?
- $C O L_{n}$: is there a 1 -column in a $n \times n$ matrices?

FBDD representing $f_{n}=\left(R O W_{n} \vee C O L_{n}\right)$ of size $2^{\Omega(n)}$.

Proof on Friday morning! Don't miss it.

Things we cannot do on FBDD

$$
f=\left(s \wedge R O W_{n}\right) \vee\left(\neg s \wedge C O L_{n}\right) .
$$

Things we cannot do on FBDD

$$
\exists s . f=\left(s \wedge R O W_{n}\right) \vee\left(\neg s \wedge C O L_{n}\right) .
$$

Order matters.

$$
f=\left(s \wedge R O W_{n}\right) \vee\left(\neg s \wedge C O L_{n}\right) .
$$

Ordered FBDD (OBDD) computing f are of size $2^{\Omega(n)}$.

Proof on Friday morning! Don't miss it.

Composing OBDD

Let C^{1}, C^{2} be two OBDD using the same underlying order and $f:\{0,1\}^{2} \rightarrow\{0,1\}$. There exists an OBDD C of size $\left|C^{1}\right| \cdot\left|C^{2}\right|$ computing $f\left(C^{1}, C^{2}\right)$.

Proof idea: construct inductively an OBDD C having gates $\alpha(u, v)$ for every gate u of C_{1} and v of C_{2} such that $C_{\alpha(u, v)}$ computes $f\left(C_{u}^{1}, C_{v}^{2}\right)$ where C_{v} denotes the sub-OBDD of C starting from v.

Wrap it up!

We have seen languages to represent Boolean functions:

- with tractable queries: deciding, counting...
- with tractable transformations: negation, conditioning...
- some Boolean functions cannot be succinctly represented.

Theoretical framework

How can we study the "compilability" of a query?

P-compilability

A function $f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ is P -compilable if there exists:

- $c:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- g computable in P
such that
- for all $X \in\{0,1\}^{*},|c(X)| \leq \operatorname{poly}(|X|)$
- for all $X, Y \in\{0,1\}^{*}, f(X, Y) \Leftrightarrow g(c(X), Y)$.
- The computation of $c(X)$ is called the offline phase and can be arbitrarely long.
- Solving $y \mapsto g(c(X), y)$ is called the online phase

Limits of P-compilability

Example:

- $f(F, \tau)=1$ iff there exists a satisfying assignment τ^{\prime} of the CNF F such that $\tau^{\prime} \simeq \tau$
- If f is P -compilable then $N P \subseteq P /$ poly (very unlikely).

DNNF are a restricted form of boolean circuits:

- input are literals
- \vee and \wedge gates (no internal negation!)
- \wedge-gate are decomposable: input subcircuits have disjoint variables

More restrictive conditions:

- deterministic DNNF (d-DNNF): \vee-gates verify $\alpha \vee \beta$ such that $\alpha \wedge \beta \equiv \perp$
- decision DNNF (dec-DNNF): \vee-gates are of the form $(x \wedge \alpha) \vee(\neg x \wedge \beta)$. They are also deterministic.

Example

Example

Example

Knowledge Compilation Map

Notation	Query	Explanation
CO	Consistency check	Is D satisfiable?
VA	Validity check	Is D a tautology?
CE	Clause entailment	does $D \Rightarrow C$ for a clause $C ?$
SE	Sentential entailment	does $D_{1} \Rightarrow D_{2} ?$
CT	Model counting	how many solutions has $D ?$
ME	Model enumeration	Enumerate the solutions of D.

Knowledge Compilation Map

Notation	Query	Explanation
CO	Consistency check	Is D satisfiable?
VA	Validity check	Is D a tautology?
CE	Clause entailment	does $D \Rightarrow C$ for a clause $C ?$
SE	Sentential entailment	does $D_{1} \Rightarrow D_{2} ?$
CT	Model counting	how many solutions has $D ?$
ME	Model enumeration	Enumerate the solutions of D.

	CO	VA	CE	SE	CT	ME
DNNF	\checkmark	\times	\checkmark	\times	\times	\checkmark
d-DNNF	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark
dec-DNNF	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark
FBDD	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark
OBDD	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Knowledge Compilation Map

Notation	Transformation	Explanation
$[\tau]$	Conditionning	$D[\tau]$ for τ a partial assignment
\exists	Forgetting	$\exists x . D$
\wedge	Conjunction	$D_{1} \wedge D_{2}$
\vee	Disjunction	$D_{1} \vee D_{2}$
\neg	Negation	$\neg D$

Knowledge Compilation Map

Notation	Transformation	Explanation
$[\tau]$	Conditionning	$D[\tau]$ for τ a partial assignment
\exists	Forgetting	$\exists x . D$
\wedge	Conjunction	$D_{1} \wedge D_{2}$
\vee	Disjunction	$D_{1} \vee D_{2}$
\neg	Negation	$\neg D$

	$[\tau]$	\exists	\wedge	\vee	\neg
DNNF	\checkmark	\checkmark	\times	\checkmark	\times
d-DNNF	\checkmark	\times	\times	\times	$?$
dec-DNNF	\checkmark	\times	\times	\times	$?$
FBDD	\checkmark	\times	\times	\times	\checkmark
OBDD	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Knowledge Compilation Map

How does different languages compare? We write $L \subseteq L^{\prime}$ if every $C \in L$ can be simulated by $C^{\prime} \in L^{\prime}$ with $\left|C^{\prime}\right| \leq p o l y(|C|)$: OBDD $\subsetneq \mathrm{FBDD} \subsetneq \mathrm{dec}-\mathrm{DNNF} \subsetneq \mathrm{d}-\mathrm{DNNF} \subsetneq \mathrm{DNNF}$

- OBDD \subsetneq FBDD: $\left(s \wedge R O W_{n}\right) \vee\left(\neg s \wedge C O L_{n}\right)$
- dec-DNNF $\subsetneq \mathrm{d}-\mathrm{DNNF}:(E V E N \wedge R O W) \vee(O D D \wedge C O L)$

Open question: DNF vs d-DNNF?

