Top-Down Knowledge Compilation

Jean-Marie Lagniez \& Pierre Marquis*

CRIL, U. Artois \& CNRS
Institut Universitaire de France*
France

Overview

SAT Solving
Introduction
DP
DPLL
Boolean Constraint Propagation (BCP)
Heuristics
CDCL
From sat Solving to Top-Down Knowledge Compilation
Heuristics for Decomposition

Overview

SAT Solving
Introduction
DP
DPLL
Boolean Constraint Propagation (BCP)
Heuristics
CDCL

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Contraint Programming

Constraint programming: two steps

- modeling the problem with a set of constraints Σ
\Rightarrow constraints representation with a dedicated formalism: SAT, CSP, PSEUDO, ...
- solving the problem
\Rightarrow using a constraint-based solver to find a solution

Contraint Programming

Constraint programming: two steps

- modeling the problem with a set of constraints Σ
\Rightarrow constraints representation with a dedicated formalism: SAT, CSP, PSEUDO, ...
- solving the problem
\Rightarrow using a constraint-based solver to find a solution

The sat Problem

$$
\begin{aligned}
\Sigma & =(\neg a \vee \neg b \vee \neg c) \\
& \wedge(a \vee c) \\
& \wedge(a \vee b) \\
& \wedge(\neg b \vee \neg c)
\end{aligned}
$$

- Propositional variables: a, b, c
- Literals: $a, \neg a$
- Clauses: $a \vee \neg b$ (the constraints)
- CNFformula: Σ
- SAT problem: does there exist an interpretation \mathcal{I} of the variables that satisfies the formula Σ ?

The sat Problem

$$
\begin{aligned}
\Sigma & =(\neg a \vee \neg b \vee \neg c) \\
& \wedge(a \vee c) \\
& \wedge(a \vee b) \\
& \wedge(\neg b \vee \neg c)
\end{aligned}
$$

- Propositional variables: a, b, c
- Literals: $a, \neg a$
- Clauses: $a \vee \neg b$ (the constraints)
- CNFformula: Σ
- SAT problem: does there exist an interpretation \mathcal{I} of the variables that satisfies the formula Σ ?

The sat Problem

$$
\begin{aligned}
\Sigma & =(\neg a \vee \neg b \vee \neg c) \\
& \wedge(a \vee c) \\
& \wedge(a \vee b) \\
& \wedge(\neg b \vee \neg c)
\end{aligned}
$$

- Propositional variables: a, b, c
- Literals: $a, \neg a$
- Clauses: $a \vee \neg b$ (the constraints)
- CNFformula: Σ
- SAT problem: does there exist an interpretation \mathcal{I} of the variables that satisfies the formula Σ ?

The sat Problem

$$
\begin{aligned}
\Sigma & =(\neg a \vee \neg b \vee \neg c) \\
& \wedge(a \vee c) \\
& \wedge(a \vee b) \\
& \wedge(\neg b \vee \neg c)
\end{aligned}
$$

a	b	c
T	\perp	\perp

- Propositional variables: a, b, c
- Literals: $a, \neg a$
- Clauses: $a \vee \neg b$ (the constraints)
- CNFformula: Σ
- SAT problem: does there exist an interpretation \mathcal{I} of the variables that satisfies the formula Σ ?
- Try all the possibility: illusory!

Number of instructions	Time needed
$2^{3}=8$	immediate
$2^{37}=80 \times 10^{9}$	1 second
$2^{56}=8 \times 10^{16}$	≈ 277 hours
$2^{60}=10^{18}$	166 days
$2^{128}=340 \times 10^{38}$	≥ 3 billion of years

The Power of SAT

The Power of SAT

- SAT is NP-complete
- Each problem in NP can be reduced in polynomial time to SAT

Several Approaches to SAT Solving

- Complete methods
- DP algorithm
- DPLL algorithm
- CDCL SAT solver
- Incomplete methods
- genetic algorithms
- ant colony algorithms
- local search (RL)

Several Approaches to SAT Solving

- Complete methods
- DP algorithm
- DPLL algorithm
- CDCL SAT solver
- Incomplete methods
- genetic algorithms
- ant colony algorithms
- local search (RL)

Overview

SAT Solving
Introduction
DP
DPLL
Boolean Constraint Propagation (BCP)
Heuristics
CDCL
From sat Solving to Top-Down Knowledge Compilation
Heuristics for Decomposition

Resolution

- Two clauses that contain a variable x in opposite phases (polarities) imply a new clause that contains all literals except x and $\neg x$

$$
\frac{x \vee y \vee \neg z \otimes \neg x \vee t \vee u}{y \vee \neg z \vee t \vee u}
$$

- Why is this true?
- Making all the resolutions on a variable x in Σ is a way to forget it:

$$
\exists x . \Sigma \equiv(\Sigma \mid x) \vee(\Sigma \mid \neg x)
$$

- Yields a complete proof system for unsatisfiability of CNFs

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Consider the resolvents and the ones not containing x
- Termination:
- either the empty clause is derived (conclude UNSAT)
- or all variables have been eliminated

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Consider the resolvents and the ones not containing x
- Termination:
- either the empty clause is derived (conclude UNSAT)
- or all variables have been eliminated
- Let Σ s.t. x does not occur in Ψ, α_{i} and β_{i} :

$$
\begin{aligned}
\Sigma & =\Psi \cup\left\{x \vee \alpha_{1}, x \vee \alpha_{2}, \ldots, x \vee \alpha_{n_{x}}, \neg x \vee \beta_{1}, \neg x \vee \beta_{2}, \ldots, \neg x \vee \beta_{n_{\neg x}}\right\} \\
& =\Psi \cup\left\{x \vee\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n_{x}}\right), \neg x \vee\left(\beta_{1} \wedge \beta_{2} \wedge \ldots \wedge \beta_{n_{\neg x}}\right)\right\}
\end{aligned}
$$

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Consider the resolvents and the ones not containing x
- Termination:
- either the empty clause is derived (conclude UNSAT)
- or all variables have been eliminated
- Let Σ s.t. x does not occur in Ψ, α_{i} and β_{i} :

$$
\begin{aligned}
\Sigma & =\Psi \cup\left\{x \vee \alpha_{1}, x \vee \alpha_{2}, \ldots, x \vee \alpha_{n_{x}}, \neg x \vee \beta_{1}, \neg x \vee \beta_{2}, \ldots, \neg x \vee \beta_{n_{\neg x}}\right\} \\
& =\Psi \cup\left\{x \vee\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n_{x}}\right), \neg x \vee\left(\beta_{1} \wedge \beta_{2} \wedge \ldots \wedge \beta_{n_{\neg x}}\right)\right\}
\end{aligned}
$$

- The truth value of x does not care, so satisying Σ is equivalent to satisfy:

$$
\begin{aligned}
\Sigma^{\prime} & =\Psi \cup\left\{\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n_{x}}\right) \vee\left(\beta_{1} \wedge \beta_{2} \wedge \ldots \wedge \beta_{n_{-x}}\right)\right\} \\
& =\Psi \cup\left\{\bigwedge_{i=1}^{n_{x}} \bigvee_{j=1}^{n_{-x}} \alpha_{i} \vee \beta_{j}\right\}
\end{aligned}
$$

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Consider the resolvents and the ones not containing x
- Termination:
- either the empty clause is derived (conclude UNSAT)
- or all variables have been eliminated
- Let Σ s.t. x does not occur in Ψ, α_{i} and β_{i} :

$$
\begin{aligned}
\Sigma & =\Psi \cup\left\{x \vee \alpha_{1}, x \vee \alpha_{2}, \ldots, x \vee \alpha_{n_{x}}, \neg x \vee \beta_{1}, \neg x \vee \beta_{2}, \ldots, \neg x \vee \beta_{n_{\neg x}}\right\} \\
& =\Psi \cup\left\{x \vee\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n_{x}}\right), \neg x \vee\left(\beta_{1} \wedge \beta_{2} \wedge \ldots \wedge \beta_{n_{\neg x}}\right)\right\}
\end{aligned}
$$

- The truth value of x does not care, so satisying Σ is equivalent to satisfy:

$$
\begin{aligned}
\Sigma^{\prime} & =\Psi \cup\left\{\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n_{x}}\right) \vee\left(\beta_{1} \wedge \beta_{2} \wedge \ldots \wedge \beta_{n_{-x}}\right)\right\} \\
& =\Psi \cup\left\{\bigwedge_{i=1}^{n_{x}} \bigvee_{j=1}^{n_{-x}} \alpha_{i} \vee \beta_{j}\right\}
\end{aligned}
$$

- Can generate an exponential number of clauses!

Overview

SAT Solving
Introduction
DP
DPLL
Boolean Constraint Propagation (BCP)
Heuristics
CDCL
From sat Solving to Top-Down Knowledge Compilation
Heuristics for Decomposition

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

DPLL-based SAT Solvers

- Perform a depth-first search through the space of possible variable assignments
- Stop when a satisfying assignment is found or all possibilities have been tried

$$
\Sigma=\{\neg a, \neg b \vee c\}
$$

Possible optimizations:

- Skip branches where no satisfying assignments can occur
- Organize the search to maximize the amount of the search space that can be skipped

DPLL algorithm

Algorithm 1: DPLL

Input: Σ a set of clauses
Output: \top if Σ is satisfiable, \perp otherwise
$1 \Sigma \longleftarrow$ simplification (Σ);
2 if $(\Sigma=\emptyset)$ then return T;
3 if $(\perp \in \Sigma)$ then return \perp;
$4 \ell \longleftarrow \operatorname{pickLiteral}(\Sigma)$;
5 return $\operatorname{DPLL}(\Sigma \wedge \ell)$ or $\operatorname{DPLL}(\Sigma \wedge \neg \ell)$

- pickLiteral: select some variable and assign it a value
- simplification: simplify the formula using syntactic rules (unit propagation a.k.a. boolean constraint propagation (BCP))

Overview

SAT Solving
Introduction
DP
DPLL
Boolean Constraint Propagation (BCP)
Heuristics
CDCL
From sat Solving to Top-Down Knowledge Compilation
Heuristics for Decomposition

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Boolean Constraint Propagation (BCP)

- A clause of size 1 is called unit clause
- The literal belonging to a unit clause is called unit literal
- The unit propagation process is the simplification rule which is used in every DPLL-based SAT solver
- Applying the rule consists in recursively assigning the unit literals and then simplifying the formula until a fixed point is reached

$$
\begin{array}{lll}
\alpha_{1}: a & \alpha_{2}: \neg a \vee \neg c \vee \neg b & \alpha_{3}: \neg a \vee c \vee b \\
\alpha_{4}: \neg a \vee b & \alpha_{5}: \neg c \vee \neg e & \alpha_{6}: b \vee \neg d \vee \neg a
\end{array}
$$

- In practice, most of the affectations result from the unit propagation process (more than 90%)
- This explains why a lot of efforts has been devoted to improve this process (watched literals)

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Overview

SAT Solving
Introduction
DP
DPLL
Boolean Constraint Propagation (BCP)
Heuristics
CDCL
From sat Solving to Top-Down Knowledge Compilation
Heuristics for Decomposition

Trashing

$$
\begin{aligned}
& \Sigma=\{a \vee b, \neg a \vee b \vee c, \neg b \vee c \vee d, \neg b \vee c \vee \neg d, \neg b \vee \neg c \vee d, \neg b \vee \neg c \vee \neg d\} \cup \Omega \\
& \text { with } \operatorname{Var}(\Omega) \cap\{a, b, c, d\}=\emptyset
\end{aligned}
$$

Trashing

$\Sigma=\{a \vee b, \neg a \vee b \vee c, \neg b \vee c \vee d, \neg b \vee c \vee \neg d, \neg b \vee \neg c \vee d, \neg b \vee \neg c \vee \neg d\} \cup \Omega$ with $\operatorname{Var}(\Omega) \cap\{a, b, c, d\}=\emptyset$

$$
\Omega \cup\left\{\begin{array}{c}
(c \vee d),(c \vee \neg d), \\
(\neg c \vee d),(\neg c \vee \neg d)
\end{array}\right\}
$$

$$
\Omega \cup\left\{\begin{array}{c}
(b \vee c),(\neg b \vee c \vee d),(\neg b \vee c \vee \neg d), \\
(\neg b \vee \neg c \vee d),(\neg b \vee \neg c \vee \neg d)
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
(c \vee d),(c \vee \neg d), \\
(\neg c \vee d),(\neg c \vee \neg d)
\end{array}\right\}
$$

$$
\begin{gathered}
\left\{\begin{array}{c}
(b \vee c),(\neg b \vee c \vee d),(\neg b \vee c \vee \neg d), \\
(\neg b \vee \neg c \vee d),(\neg b \vee \neg c \vee \neg d)
\end{array}\right\} \\
c \mid \\
\{(\neg b \vee d),(\neg b \vee \neg d)\} \\
\neg b \mid \\
\}
\end{gathered}
$$

Branching Heuristics

- Choosing the next variable to assign and its first polarity is a decisive step
- Its impact on the size of the search tree explored (so on the CPU time to explore it) is huge
- However, choosing the variables that minimize the size of the search tree is hard (NP-hard)
- Several branching heuristics have been pointed out
- Three families:
- syntactic approaches
- look-ahead approaches
- look-back approaches

Syntactic Branching Heuristics (I)

Aim: choosing a variable that produces a maximum of unit propagation or that satisfies a maximum number of clauses

- вонм selects a variable that maximizes, w.r.t. the lexicographic order, the vector $\left(H_{1}(x), H_{2}(x), \ldots, H_{n}(x)\right)$ with:

$$
H_{i}(x)=1 \times \max \left(h_{i}(x), h_{i}(\neg x)\right)+2 \times \min \left(h_{i}(x), h_{i}(\neg x)\right)
$$

where $h_{i}(x)$ is the number of clauses of size i containing x

Syntactic branching heuristics (II)

- moms selects a variable with a Maximum number of Occurrences in Minimum Size Clauses $\operatorname{MOMS}(x, k)=\max _{k}\left(\left(f^{k}(x)+f^{k}(\neg x)\right) \times 2^{k}+f^{k}(x) \times f^{k}(\neg x)\right)$ with $f^{k}(x)$ is the number of unsatisfied clauses of size $\leq k$ containing x
- JW is based on a similar idea as mомs

$$
J(\ell)=\sum_{\alpha \in \Sigma \mid \ell \in \alpha} 2^{-|\alpha|}
$$

JW-os maximizes $J(\ell)$ and JW-TS maximizes $J(x)+J(\neg x)$

Look-Ahead Branching Heuristics

Aim: anticipate the effect of affecting a variable. Such approaches leads to a "local" breadth-first exploration of the search tree

- BCP uses the unit propagation process to decide the next variable to assign. The variable that maximizes the number of unit literals is selected first
- bsh is a Backbone Search Heuristic. A variable x that maximizes $\operatorname{score}(k, x)=\operatorname{bsh}(k, x) \times \operatorname{bsh}(k, \neg x)$ is selected first

```
Algorithm 2: \(\mathrm{bsh}(i: \mathrm{int}, \ell\) : literal)
\(\overline{\mathcal{B}}(\ell) \leftarrow\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq \Sigma\) s.t. \(\forall \alpha,|\alpha| \leq 3\) and \(\ell \in \alpha ;\)
if \(i=1\) then
        return \(\sum_{(u \vee v) \in \mathcal{B}(\ell)}(2 \times \operatorname{bin}(\neg u)+\operatorname{ter}(\neg u)) \times(2 \times \operatorname{bin}(\neg v)+\operatorname{ter}(\neg v))\)
else
    return \(\sum_{(u \vee v) \in \mathcal{B}(\ell)} \mathrm{bsh}(\mathrm{i}-1, \neg u) \times \mathrm{bsh}(\mathrm{i}-1, \neg v) ;\)
end
```


Look-Back Branching Heuristics

Aim: keeping information from a long phase of search and deduction to avoid the repetition of the same mistakes in the future (nogoods or variable activity)

- The weighting of the conflict clauses is based on the following observation: when a clause has been proved unsatisfiable it is important to exploit this piece of information for the rest of the search. To do so, it is enough to increase the weight of the variables that conducted to unsatisfiability
- vSIDS associates a counter, called activity, with each variable. When a conflict occurs, the activity of variables that are responsible of this failure are bumped

Polarity Heuristics

- When a variable is selected to be assigned a truth value must be chosen. This choice is at least as important as the choice of the variable itself
- Deciding the best way to assign a variable is NP-hard, so heuristics must be used:
- false always assigns to false (used in MINISAT)
- Jw selects the phase of the variable that maximizes the jw function
- occurrence tries to maximize the number of satisfied clauses. The weight of ℓ is given by the number of its occurrences
- progress saving tries to avoid solving several times the same part of the instance. To do so, when a variable is assigned during the search, its phase is saved. Then, when a variable has to be assigned again, its phase is chosen as previously

Overview

```
SAT Solving
    Introduction
    DP
    DPLL
    Boolean Constraint Propagation (BCP)
    Heuristics
    CDCL
        Conflict analysis
        Watched Literals
        Restarts
        Reducing the Learnt Clauses Database
        CDCL algorithm
        In practice
```

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

What is a CDCL SAT Solver?

- Extend DPLL SAT solver with:
- Clause learning and non-chronological backtracking
- Exploit UIPs
- Minimize learned clauses
- Opportunistically delete clauses
- Can restart the current search
- Lazy data structures
- Watched literals
- Conflict-guiding branching
- Lightweight branching heuristics
- Phase saving

A Motivating Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

A Motivating Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

A Motivating Example

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

$$
\begin{gathered}
\neg e \vee \neg i \vee g \otimes \neg i \vee \neg g=\neg e \vee \neg i \\
\neg e \vee \neg i \otimes \neg e \vee i=\neg e
\end{gathered}
$$

CDCL SAT Solver Ingredients

- Assignment, BCP
- heuristic to choose the next variable to assign
- heuristic to choose its polarity
- BCP

$$
\Sigma=\left\{\alpha_{1}: a \vee d\right\}
$$

- Conflict analysis and learning
- implication graph
- learning
- back-jumping

Constructing and analyzing an implication graph

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
\neg a^{1}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
\neg a^{1}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
c^{2}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
c^{2}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
\neg b^{3}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
\neg b^{3}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
e^{4}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

$$
e^{4}
$$

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Generation

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Assignment, Propagation

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Conflict Graph Analysis

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

- Stops as soon as the resolvent has a unique literal from the last decision level (FUIP)
- δ is added to the CNF (this ensures the completeness of the search)

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

\square
e^{4}

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

$$
\delta_{1}=\neg c^{2} \vee \neg j_{\alpha_{3}}^{2} \vee \neg e
$$

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Back-Jumping

$$
\begin{array}{lll}
\alpha_{1}: a \vee d & \alpha_{2}: a \vee \neg c \vee \neg f & \alpha_{3}: \neg d \vee j \vee f \\
\alpha_{4}: b \vee h & \alpha_{5}: \neg c \vee \neg e \vee i & \alpha_{6}: \neg i \vee \neg j \vee \neg g \\
\alpha_{7}: e \vee \neg k & \alpha_{8}: e \vee \neg h \vee k & \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
\end{array}
$$

Back-Jumping

$\alpha_{1}: a \vee d \quad \alpha_{2}: a \vee \neg c \vee \neg f \quad \alpha_{3}: \neg d \vee j \vee f$

$$
\alpha_{4}: b \vee h \quad \alpha_{5}: \neg c \vee \neg e \vee i \quad \alpha_{6}: \neg i \vee \neg j \vee \neg g
$$

$$
\alpha_{7}: e \vee \neg k \quad \alpha_{8}: e \vee \neg h \vee k \quad \alpha_{9}: \neg c \vee \neg e \vee \neg i \vee g
$$

SATISFIABILITY PROVED

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is $\underset{a}{a}:\left\{{ }_{\{ }\right.$ssigned $\left.\alpha_{1}\right\}$ to true

$$
\neg c:\left\{\alpha_{2}\right\}
$$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}, \alpha_{1}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}, \alpha_{1}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}, \alpha_{1}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}\right\}$
$\neg c:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
a: $\}$
$b:\left\{\alpha_{1}\right\}$
$c:\left\{\alpha_{3}, \alpha_{1}\right\}$
$\neg a:\left\{\alpha_{1}, \alpha_{3}\right\}$
$\neg b:\left\{\alpha_{2}, \alpha_{3}\right\}$
$\neg C:\left\{\alpha_{2}\right\}$

Watched Literals

- BCP is triggered when all but one literal in a clause is assigned to false
- Idea: when two variables are either unassigned or one is assigned to true, no need to do anything
- Checking whether this condition is satisfied is enough

$$
\alpha_{1}: \neg a \vee b \vee c \quad \alpha_{2}: \neg a \vee \neg c \vee \neg b \quad \alpha_{3}: \neg a \vee c \vee \neg b
$$

- Mapping between watched literals and the clauses containing them
- When ℓ is propagated to true it is enough to consider the clauses mapped to $\neg \ell$ and to search for another watched literal
- Let us suppose that a is assigned to true
$a:\{ \}$
$b:\left\{\alpha_{1}\right\}$
c: $\left\{\alpha_{3}, \alpha_{1}\right\}$
$\neg a:\{ \}$
$\neg b:\left\{\alpha_{2}, \alpha_{3}\right\}$
$\neg c:\left\{\alpha_{2}\right\}$

Heavy-Tailed Phenomenon

- Depth-first search procedures often exhibit a remarkable variability in the time required to solve the instance
- Heavy-tailed behavior arises from the fact that wrong branching decisions may lead to explore an exponentially large subtree that contains no solutions
- Restarts is a good mechanism for avoiding such an issue

Restarts

- Often it a good strategy to abandon what you do and restart
- for satisfiable instances the solver may get stuck in a part of the search space with no solutions
- for unsatisfiable instances focusing on one part might miss short proofs
\Rightarrow restart the solver once the number of conflicts has reached a given limit
- Avoid to run into the same dead end
- by randomization (either on the decision variable or its phase)
- and/or just keep all the learned clauses
- For completeness the limit must be increased dynamically
- arithmetically, geometrically, Luby, Inner/Outer, Glucose restart

Reducing Learnt Clauses

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the BCP process

Reducing Learnt Clauses

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the BCP process
- "Useless" learnt clauses are periodically deleted $\left(t_{0}, t_{1} \ldots t_{k}, \ldots\right)$

α_{1}	α_{2}	α_{3}	$\alpha_{4} \mid \alpha_{5}$	\ldots	\ldots

Reducing Learnt Clauses

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the BCP process
- "Useless" learnt clauses are periodically deleted $\left(t_{0}, t_{1} \ldots t_{k}, \ldots\right)$

α_{k}	α_{5}	α_{2}	α_{1}	α_{n}	\ldots	\cdots

Reducing Learnt Clauses

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the BCP process
- "Useless" learnt clauses are periodically deleted $\left(t_{0}, t_{1} \ldots t_{k}, \ldots\right)$

α_{k}	α_{5}	α_{2}	α_{1}	α_{n}	\cdots	\cdots

Reducing Learnt Clauses

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the BCP process
- "Useless" learnt clauses are periodically deleted $\left(t_{0}, t_{1} \ldots t_{k}, \ldots\right)$

$$
\begin{array}{|l||l||l|l|}
\hline \alpha_{k} & \alpha_{5} & \alpha_{2} & \alpha_{1} \\
\hline
\end{array} \alpha_{n}
$$

- Deleting too many clauses makes the learning process useless

Reducing Learnt Clauses

- CDCL SAT solvers learn clauses at each conflict
- Keeping all these clauses can slow down the BCP process
- "Useless" learnt clauses are periodically deleted $\left(t_{0}, t_{1} \ldots t_{k}, \ldots\right)$

$$
\begin{array}{|l||l||l|l|}
\hline \alpha_{k} & \alpha_{5} & \alpha_{2} & \alpha_{1} \\
\hline
\end{array} \alpha_{n}
$$

- Deleting too many clauses makes the learning process useless
- However, identifying whether a clause will be useful in the future is a hard task!

Estimating the Clauses Utility

- The vsids measure
- Keeping clauses that are often - and recently - used in the conflict analysis process
- Dynamic measure
- A clause useful in the past will be useful again in the future!

Estimating the Clauses Utility

- The vsids measure
- Keeping clauses that are often - and recently - used in the conflict analysis process
- Dynamic measure
- A clause useful in the past will be useful again in the future!
- The LBD measure
- Gives the number of decision-levels in the learnt clause
- Static measure
- Keeping clauses with a small LBD

Estimating the Clauses Utility

- The vSIDS measure
- Keeping clauses that are often - and recently - used in the conflict analysis process
- Dynamic measure
- A clause useful in the past will be useful again in the future!
- The LBD measure
- Gives the number of decision-levels in the learnt clause
- Static measure
- Keeping clauses with a small LBD
- The PSM measure
- Gives the number of literals assigned to false in the interpretation handled by Progress Saving
- Static measure
- Keeping clauses with a small PSM

CDCL algorithm

Input: a CNFformula Σ
Output: SAT or UNSAT
$1 \Delta=\emptyset / /$ learnt clauses database
2 while (true) do
if (!propagate()) then if $((c=$ analyzeConflict ()$)==\emptyset)$ then return UNSAT ; $\Delta=\Delta \cup\{c\} ;$
if (timeToRestart() then backtrack to level 0 ; else
backtrack to the assertion level of c;
else
$\ell=$ decide();
if $(\ell==$ null $)$ then return SAT ;
assert ℓ in a new decision level;
if (timeToReduce()) then clean (Δ);

CDCL algorithm

Input: a CNFformula Σ
Output: SAT or UnsAT
$1 \Delta=\emptyset / /$ learnt clauses database
2 while (true) do
if (!propagate()) then if $((c=$ analyzeConflict ()$)==\emptyset)$ then return UNSAT ; $\Delta=\Delta \cup\{c\} ;$
if (timeToRestart() then backtrack to level 0 ; else
backtrack to the assertion level of c;
else
$\ell=$ decide();
if ($\ell==$ null) then return SAT ;
assert ℓ in a new decision level;
if (timeToReduce()) then clean(Δ);

About the Performance of SAT Solvers

- Since 2001

About the Performance of SAT Solvers

- CDCL SAT solvers are not efficient on all families

About the Performance of SAT Solvers

- CDCL SAT solvers use several constants impacting their efficiency

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation Introduction
MODS
DT
FBDD
decision-DNNF

Heuristics for Decomposition

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation Introduction
MODS
DT
FBDD
decision-DNNF

Heuristics for Decomposition

Motivations

- SAT is NP-complete \Rightarrow in practice no guarantee to solve the instance within a short delay
- Compile the instance into a representation from a language \mathcal{L} for which satisfiabily and more difficult issues (e.g. model counting) are easy
- Useful when the compilation effort can be balanced by considering sufficiently many queries sharing the same fixed part (pieces of information that are compiled)
- Which \mathcal{L} to choose?
- Use the knowledge compilation map!

KC for Boolean Functions: Queries

Decision or functions problems / properties of languages

- CO (consistency)
- CE (clause entailment: implicates)
- VA (validity)
- EQ (equivalence)
- SE (sentential entailment)
- IM (implicants)
- CT (model counting)
- ME (model enumeration)

KC for Boolean Functions: Queries

Decision or functions problems / properties of languages

- CO (consistency)
- CE (clause entailment: implicates)
- VA (validity)
- EQ (equivalence)
- SE (sentential entailment)
- IM (implicants)
- CT (model counting)
- ME (model enumeration)

KC for Boolean Functions: Transformations

Function problems / properties of languages

- CD (conditioning)
- $\wedge \mathbf{C}(\wedge \mathbf{B C})$ (closure under $\wedge)$
- $\vee \mathbf{C}(\vee B C)$ (closure under \vee)
- $\neg \mathbf{C}$ (closure under \neg)
- FO (SFO) (forgetting)

KC for Boolean Functions: Transformations

Function problems / properties of languages

- CD (conditioning)
- $\wedge \mathbf{C}(\wedge B C)$ (closure under $\wedge)$
- $\vee \mathbf{C}(\vee B C)$ (closure under \vee)
- $\neg \mathbf{C}$ (closure under \neg)
- FO (SFO) (forgetting)

The KC Map for Circ

- $\sqrt{ }$ means that a polynomial-time algorithm exists for answering this query/making this transformation
- o means that a polynomial-time algorithm does not exist for answering this query/making this transformation, unless $P \neq N P$

\mathcal{L}	CO	VA	CE	IM	EQ	SE	CT	ME
Circ	\circ							

TABLE: Queries

\mathcal{L}	CD	FO	SFO	\wedge	\wedge BC	$\checkmark \mathrm{C}$	VBC	$\neg \mathrm{C}$
Circ	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark

Fragment of the KC Map: Queries

\mathcal{L}	CO	VA	CE	IM	EQ	SE	CT	ME
Circ	\bigcirc							
CNF	\bigcirc	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DNF	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark
d-DNNF	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$?	\bigcirc	\checkmark	$\sqrt{ }$

Fragment of the KC Map: Transformations

\mathcal{L}	CD	FO	SFO	\wedge C	$\wedge B C$	\checkmark C	VBC	$\neg \mathrm{C}$
Circ	$\sqrt{ }$	\bigcirc	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$
CNF	\checkmark	\bigcirc	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\bigcirc	\checkmark	\bigcirc
DNF	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\bigcirc
d-DNNF	$\sqrt{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	?

Succinctness

Succinctness captures the ability of a language to represent information using little space

- \leq_{s} is polynomial-space translatability
- \mathcal{L}_{1} is at least as succinct as \mathcal{L}_{2}, denoted $\mathcal{L}_{1} \leq_{s} \mathcal{L}_{2}$, iff there exists a polynomial p such that for every formula $\alpha \in \mathcal{L}_{2}$, there exists an equivalent formula $\beta \in \mathcal{L}_{1}$ where $|\beta| \leq p(|\alpha|)$
- \leq_{s} is a pre-order over the subsets of Circ

Succinctness Picture for some Languages

Figure: Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation Introduction
MODS
DT
FBDD
decision-DNNF

Heuristics for Decomposition

Enumerate all solutions using a SAT solver (MODS)

- A very simple way to compute the number of models of a propositional formula is to incrementally compute each of them
- To do so, we can easily use a SAT solver

- With Δ initially set to \emptyset

KC for DT: queries

\mathcal{L}	CO	VA	CE	IM	EQ	SE	CT	ME
Circ	\circ							
CNF	\circ	\checkmark	\circ	\checkmark	\circ	\circ	\circ	\circ
DNF	\checkmark	\circ	\checkmark	\circ	\circ	\circ	\circ	\checkmark
d-DNNF	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$?$	\circ	\checkmark	\checkmark
MODS	\checkmark							

TABLE: Queries

KC for DT: transformations

\mathcal{L}	CD	FO	SFO	$\wedge \mathbf{C}$	$\wedge \mathbf{B C}$	$\vee \mathbf{C}$	$\vee \mathbf{B C}$	$\neg \mathbf{C}$
Circ	$\sqrt{ }$	\circ	$\sqrt{ }$					
CNF	$\sqrt{ }$	\circ	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\circ	$\sqrt{ }$	\circ
DNF	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\circ	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\circ
d-DNNF	$\sqrt{ }$	\circ	\circ	\circ	\circ	\circ	\circ	$?$
MODS	$\sqrt{ }$	\circ	\checkmark	\circ	\checkmark	\circ	\checkmark	\circ

TABLE: Transformations

Succinctness

- The size of the representation is given by the number of models of the formula

Figure : Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Succinctness

- The size of the representation is given by the number of models of the formula

Figure : Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Is MODS a Good KC Language?

- Can I compile efficiently the following formula into MODS?

$$
\Sigma=\bigvee_{i=1}^{n} x_{i}
$$

Is MODS a Good KC Language?

- Can I compile efficiently the following formula into MODS?

$$
\Sigma=\bigvee_{i=1}^{n} x_{i}
$$

- No!
- Σ has $2^{n}-1$ models

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation Introduction
MODS
DT
FBDD
decision-DNNF

Heuristics for Decomposition

Taking Advantage of the Trace of the Solver

- When a sat solver is used to solve a CNF instance Σ, it explores the search space of all interpretations until a model is found, if any
- The same search space needs to be considered for compiling Σ, except that the process should not stop when a model is found
- Consequently, we can take advantage of the trace of the solver for generating a compiled form

Decision Tree (DT)

- Shannon Expansion: $\Sigma \equiv(x \wedge \Sigma \mid x) \vee(\neg x \wedge \Sigma \mid \neg x)$

- DT is complete but is not succinct
- A decision tree for Σ can be seen as the joined representation of a deterministic DNF of Σ and a deterministic DNF of $\neg \Sigma$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

$$
P
$$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Decision Tree (DT): an Example

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

- The size of the representation is the number of edges of the graph: $|\Sigma|=25$

KC for DT: Queries

\mathcal{L}	CO	VA	CE	IM	EQ	SE	CT	ME
Circ	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
CNF	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DNF	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\sqrt{ }$
d-DNNF	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$?	\bigcirc	\checkmark	$\sqrt{ }$
MODS	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
DT	$\sqrt{ }$							

KC for DT: Transformations

\mathcal{L}	CD	FO	SFO	\wedge	$\wedge \mathrm{BC}$	vC	VBC	-
Circ	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CNF	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	\bigcirc
DNF	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc
d-D	\checkmark	-	-	-	-	-	-	?
MODS	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	-
DT	\checkmark	。	\checkmark	-	\checkmark	。	\checkmark	\checkmark

Table: Transformations

Succinctness

Figure : Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Succinctness

Figure: Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<_{s} \mathcal{L}_{2}$

Is DT a Good KC Language?

- How to represent the following Boolean function into DT?

$$
\sum_{i=1}^{n} x_{i} \equiv 0(\bmod 2)
$$

Is DT a Good KC Language?

- How to represent the following Boolean function into DT?

$$
\sum_{i=1}^{n} x_{i} \equiv 0(\bmod 2)
$$

- All the variables must be assigned to be able to decide whether the function evaluates to true
- So all the interpretations must be considered

Overview

SAT Solving
 From sat Solving to Top-Down Knowledge Compilation Introduction
 MODS
 DT
 FBDD
 decision-DNNF

Heuristics for Decomposition

Caching

- Caching = sub-circuit sharing
- Let us consider again the previous example:

$$
\sum_{i=1}^{n} x_{i} \equiv 0(\bmod 2)
$$

Caching

- Caching = sub-circuit sharing
- Let us consider again the previous example:

- May the parity function be efficiently compiled using caching?

Caching

- Caching = sub-circuit sharing
- Let us consider again the previous example:

- May the parity function be efficiently compiled using caching? Yes!

Free Binary Decision Diagram (FBDD)

- $\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)$

Free Binary Decision Diagram (FBDD)

$$
\Sigma \Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)
$$

Free Binary Decision Diagram (FBDD)

$$
\Sigma \Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)
$$

Free Binary Decision Diagram (FBDD)

$$
\Sigma \Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)
$$

Free Binary Decision Diagram (FBDD)

$$
\Sigma \Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)
$$

Free Binary Decision Diagram (FBDD)

$$
\Sigma=(q \wedge \neg p) \vee \neg r \vee(((\neg p \wedge \neg r) \vee(p \wedge r)) \wedge q)
$$

KC for DT: Queries

\mathcal{L}	CO	VA	CE	IM	EQ	SE	CT	ME
Circ	\bigcirc							
CNF	\bigcirc	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DNF	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\sqrt{ }$
d-DNNF	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$?	\bigcirc	$\sqrt{ }$	$\sqrt{ }$
MODS	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$				
DT	$\sqrt{ }$							
FBDD	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$?	\bigcirc	$\sqrt{ }$	$\sqrt{ }$

KC for DT: Transformations

\mathcal{L}	CD	FO	SFO	\wedge	$\wedge B C$	VC	VBC	\neg C
Circ	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CNF	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	-	\checkmark	\bigcirc
DNF	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\bigcirc
d-DNNF	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	?
MODS	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc
DT	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\checkmark
FBDD	\checkmark	-	-	\bigcirc	\bigcirc	-	\checkmark	$\sqrt{ }$

TABLE: Transformations

Succinctness

Figure: Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<_{s} \mathcal{L}_{2}$

Succinctness

Figure: Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Can we Turn a DT Compiler into an FBDD Compiler?

- Compiling into DT and then searching for identical sub-circuits to reduce it is impractical!
- Instead one stores in a map pairs $\langle\mathrm{CNF}, \mathrm{FBDD}\rangle$ consisting of all the CNF considered so far in the search, associated with their corresponding FBDD representation
- At each new decision node, the map is looked up to determine whether the current CNF has already been considered
- If so, one does not need to compile it again!
- Is it practical to test the equivalence with the CNF formulas present in this map?

Can we Turn a DT Compiler into an FBDD Compiler?

- Compiling into DT and then searching for identical sub-circuits to reduce it is impractical!
- Instead one stores in a map pairs $\langle\mathrm{CNF}, \mathrm{FBDD}\rangle$ consisting of all the CNF considered so far in the search, associated with their corresponding FBDD representation
- At each new decision node, the map is looked up to determine whether the current CNF has already been considered
- If so, one does not need to compile it again!
- Is it practical to test the equivalence with the CNF formulas present in this map?
- No! coNP-complete

Can we Turn a DT Compiler into an FBDD Compiler?

- Compiling into DT and then searching for identical sub-circuits to reduce it is impractical!
- Instead one stores in a map pairs $\langle\mathrm{CNF}, \mathrm{FBDD}\rangle$ consisting of all the CNF considered so far in the search, associated with their corresponding FBDD representation
- At each new decision node, the map is looked up to determine whether the current CNF has already been considered
- If so, one does not need to compile it again!
- Is it practical to test the equivalence with the CNF formulas present in this map?
- No! coNP-complete
- In practice, we replace equivalence by a stronger, yet more easy to decide, relation (identity up to the ordering of the clauses)

Is FBDD a Good KC Language?

- How to compile efficiently the following formula into an FBDD representation?

$$
\bigwedge_{i=1}^{n} x_{1}^{i} \vee x_{2}^{i} \vee \ldots \vee x_{n}^{i}
$$

Is FBDD a Good KC Language?

- How to compile efficiently the following formula into an FBDD representation?

$$
\bigwedge_{i=1}^{n} x_{1}^{i} \vee x_{2}^{i} \vee \ldots \vee x_{n}^{i}
$$

- Each clause must be compiled separately
- Branching heuristics for SAT are not suited to this objective!

Overview

SAT Solving
 From sat Solving to Top-Down Knowledge Compilation Introduction
 MODS
 DT
 FBDD
 decision-DNNF

Heuristics for Decomposition

Decomposition

- Let consider again the previous formula:

$$
\bigwedge_{i=1}^{n} x_{1}^{i} \vee x_{2}^{i} \vee \ldots \vee x_{n}^{i}
$$

- We can observe that the clauses do not share variables
- Can we separately compile the clauses and then aggregate them using an and node while offering model counting?

Decomposition

- Let consider again the previous formula:

$$
\bigwedge_{i=1}^{n} x_{1}^{i} \vee x_{2}^{i} \vee \ldots \vee x_{n}^{i}
$$

- We can observe that the clauses do not share variables
- Can we separately compile the clauses and then aggregate them using an and node while offering model counting?
- Yes!

Decomposition

- Let consider again the previous formula:

$$
\bigwedge_{i=1}^{n} x_{1}^{i} \vee x_{2}^{i} \vee \ldots \vee x_{n}^{i}
$$

- We can observe that the clauses do not share variables
- Can we separately compile the clauses and then aggregate them using an and node while offering model counting?
- Yes!

Decision-d-NNF(decision-DNNF)

- $\Sigma=(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z) \wedge(y \vee t \vee u)$

Decision-d-NNF(decision-DNNF)

- $\Sigma=(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z) \wedge(y \vee t \vee u)$

Decision-d-NNF(decision-DNNF)

- $\Sigma=(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z) \wedge(y \vee t \vee u)$

Decision-d-NNF(decision-DNNF)

- $\Sigma=(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z) \wedge(y \vee t \vee u)$

Decision-d-NNF(decision-DNNF)

- $\Sigma=(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z) \wedge(y \vee t \vee u)$

Decision-d-NNF(decision-DNNF)

- $\Sigma=(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee y \vee z) \wedge(y \vee t \vee u)$

KC for DT: queries

\mathcal{L}	CO	VA	CE	IM	EQ	SE	CT	ME
Circ	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
CNF	\bigcirc	\checkmark	\bigcirc	\checkmark	-	\bigcirc	\bigcirc	\bigcirc
DNF	\checkmark	-	\checkmark	-	-	\bigcirc	-	\checkmark
d-DNNF	\checkmark	\checkmark	\checkmark	\checkmark	?	\bigcirc	\checkmark	\checkmark
MODS	\checkmark							
DT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark
FBDD	\checkmark	\checkmark	\checkmark	\checkmark	?	-	\checkmark	\checkmark
decision-DNNF	\checkmark	\checkmark	\checkmark	\checkmark	?	-	\checkmark	\checkmark

KC for DT: transformations

\mathcal{L}	CD	FO	SFO	\wedge	$\wedge B C$	VC	VBC	$\checkmark \mathrm{C}$
Circ	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CNF	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	-
DNF	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\bigcirc
d-DNNF	\checkmark	-	-	\bigcirc	-	\bigcirc	\bigcirc	?
MODS	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	-
DT	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\bigcirc	\checkmark	\checkmark
FBDD	\checkmark	\bigcirc		\bigcirc	-	\bigcirc	\checkmark	$\sqrt{ }$
decision-DNNF	\checkmark	\bigcirc	\bigcirc	\bigcirc	-	-	-	?

TABLE: Transformations

Succinctness

Figure: Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Succinctness

Figure : Succinctness: $\mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ means that $\mathcal{L}_{1}<{ }_{s} \mathcal{L}_{2}$

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

A Key Issue: Decomposition

- The Cartesian approach to problem solving: decomposing a problem into independent subproblems
- Need to design branching heuristics favoring the decomposition of the current CNF formula Σ (i.e., at the current decision node of the search tree) into (at least two) independent CNF formulae Σ_{1}, Σ_{2}
- Independence means that no variable is shared between Σ_{1} and Σ_{2}
- If a decomposition of Σ into $\Sigma_{1} \wedge \Sigma_{2}$ is found, a decomposable \wedge-node can be generated in the decision-DNNF representation of Σ one wants to build up

Decompositions

Several types of decomposition can be envisioned

- semantical decomposition: Σ_{1} and Σ_{2} are any CNF such that $\Sigma \equiv\left(\Sigma_{1} \wedge \Sigma_{2}\right)$
- syntactic decomposition: Σ_{1} and Σ_{2} are subformulae of Σ such that $\Sigma \equiv\left(\Sigma_{1} \wedge \Sigma_{2}\right)$
Every syntactic decomposition of Σ into Σ_{1} and Σ_{2} also is a semantical one, but not vice-versa

Decompositions: Example

$$
\Sigma=(a \vee b \vee c) \wedge(a \vee b \vee \bar{c}) \wedge(c \vee d)
$$

- semantical decomposition: Σ is equivalent to

$$
\underbrace{(a \vee b)}_{\Sigma_{1}} \wedge \underbrace{(c \vee d)}_{\Sigma_{2}}
$$

- syntactic decomposition: there is no syntactic decomposition of Σ, but the semantical decomposition above is a syntactic decomposition of the CNF $\Sigma^{\prime}=(a \vee b) \wedge(c \vee d)$ which is equivalent to Σ

Semantical Decomposition

- Guessing Σ_{1}, Σ_{2} and checking that $\Sigma \equiv\left(\Sigma_{1} \wedge \Sigma_{2}\right)$ would be prohibitive!
- Fortunately, guessing subsets of variables of Σ is enough
- $\Sigma_{1} \wedge \Sigma_{2}$ is a (nontrivial) semantical decomposition of Σ if and only if there exists an (ordered) bipartition $\left(X_{1}, X_{2}\right)$ of $\operatorname{Var}(\Sigma)$ such that $\operatorname{Var}\left(\Sigma_{1}\right) \subseteq X_{1}, \operatorname{Var}\left(\Sigma_{2}\right) \subseteq X_{2}$,

$$
\Sigma_{1} \equiv \exists X_{2} \cdot \Sigma, \Sigma_{2} \equiv \exists X_{1} \cdot \Sigma, \text { and } \Sigma_{1} \wedge \Sigma_{2} \models \Sigma
$$

- Such a bipartition $\left(X_{1}, X_{2}\right)$ induces a semantical decomposition of Σ

Back to the Example

$$
\Sigma=(a \vee b \vee c) \wedge(a \vee b \vee \bar{c}) \wedge(c \vee d)
$$

- $\left(X_{1}, X_{2}\right)$ with $X_{1}=\{a, b\}$ and $X_{2}=\{c, d\}$ induces a semantical decomposition of Σ
- $\exists X_{1} \cdot \Sigma \equiv c \vee d$
- $\exists X_{2} \cdot \Sigma \equiv a \vee b$
- $(a \vee b) \wedge(c \vee d) \models \Sigma$

Semantical Decomposition is Too Expensive

- In order to generate a bipartition $\left(X_{1}, X_{2}\right)$ inducing a semantical decomposition of Σ, one must be able to decide for each $x \in \operatorname{Var}(\Sigma)$ whether x should be put in X_{1} or in X_{2}
- x and y must be put in the same set whenever there exists a prime implicate of Σ which contains them both (as variables)
- Determining whether Σ has a prime implicate containing both x and y is Σ_{2}^{p}-complete
- Calling a Σ_{2}^{p} oracle at every decision node of the search tree is too much demanding in practice

Semantical Decomposition is Too Expensive

- Once a semantical decomposition $\left(X_{1}, X_{2}\right)$ has been found, we are not done: variable elimination must be applied to turn each of $\exists X_{1} . \Sigma$ and $\exists X_{2} . \Sigma$ into equivalent CNF formulae
- Variable elimination is expensive as well in general
\Rightarrow Look for syntactic decompositions, only

Syntactic Decomposition is Easy to Find

- Use BFS of the primal graph of the current CNF Σ to determine whether it has several (disjoint) connected components (feasible in linear time in the size of Σ)
- Σ has a syntactic decomposition if and only if the number of connected components is at least 2
- Back to the example: $\Sigma^{\prime}=(a \vee b) \wedge(c \vee d)$

$c \longrightarrow d$

Generating a Syntactic Decomposition

- What if Σ has no syntactic decomposition?
- Assigning some variables X_{1} of Σ to create such a decomposition
- Let Σ be a CNF. A syntactic decomposition scheme of Σ is a 3-splitting $\left(X_{1}, X_{2}, X_{3}\right)$ of $\operatorname{Var}(\Sigma)$ such that for every canonical term γ_{1} over X_{1}, the CNF formula $\Sigma \mid \gamma_{1}$ has a syntactic decomposition $\Sigma_{2}^{\gamma_{1}} \wedge \Sigma_{3}^{\gamma_{1}}$, where $\operatorname{Var}\left(\Sigma_{2}^{\gamma_{1}}\right) \subseteq X_{2}$ and $\operatorname{Var}\left(\Sigma_{3}^{\gamma_{1}}\right) \subseteq X_{3}$
- N.B. 3-splitting $=3$-partition except that the sets can be empty

From a Syntactic Decomposition Scheme to a decision-DNNF Representation

If $\left(X_{1}, X_{2}, X_{3}\right)$ is a syntactic decomposition scheme of Σ, then

γ_{1} canonical term over X_{1}
is a d-DNNF of Σ which corresponds to a decision-DNNF of it (viewing each γ as a path of a decision tree), noted
ite $\left(\gamma_{1}\right.$ canonical term over X_{1}, decision- $\operatorname{DNNF}\left(\Sigma_{2}^{\gamma_{1}}\right) \wedge$ decision $\left.-\operatorname{DNNF}\left(\Sigma_{3}^{\gamma_{1}}\right)\right)$

Back to the Example

$$
\Sigma=(a \vee b \vee c) \wedge(a \vee b \vee \bar{c}) \wedge(c \vee d)
$$

- $\left(X_{1}=\{b, c\}, X_{2}=\{a\}, X_{3}=\{d\}\right)$ is a syntactic decomposition scheme of Σ
- $\Sigma \mid(\bar{b} \wedge \bar{c})=\underbrace{a}_{\Sigma_{2}^{(\bar{b} \wedge \bar{c})}} \wedge \underbrace{d}_{\left.\sum_{3}^{(\bar{b} \wedge \bar{c})}\right)}$
- $\Sigma \mid(\bar{b} \wedge c)=\underbrace{a} \wedge \underbrace{\top}$

$$
\Sigma_{2}^{(\bar{b} \wedge c)} \quad \Sigma_{3}^{(\grave{b} \wedge c)}
$$

- $\Sigma \mid(b \wedge \bar{c})=\underbrace{\top}_{\Sigma_{2}^{(b \wedge \bar{c})}} \wedge \underbrace{d}_{\Sigma_{3}^{(b \wedge \bar{c})}}$
- $\Sigma \mid(b \wedge c)=\underbrace{\top}_{\Sigma_{2}^{(b \wedge c)}} \wedge \underbrace{\top}_{\Sigma_{3}^{(b \wedge c)}}$

A Decision-DNNF Representation of Σ

A decision-DNNF
ite $\left(\gamma_{1}\right.$ canonical term over X_{1}, decision- $\operatorname{DNNF}\left(\Sigma_{2}^{\gamma_{1}}\right) \wedge$ decision $\left.-\operatorname{DNNF}\left(\Sigma_{3}^{\gamma_{1}}\right)\right)$ associated with the syntactic decomposition scheme of Σ given by

$$
\left(X_{1}=\{b, c\}, X_{2}=\{a\}, X_{3}=\{d\}\right)
$$

is

Another Syntactic Decomposition Scheme

$$
\Sigma=(a \vee b \vee c) \wedge(a \vee b \vee \bar{c}) \wedge(c \vee d)
$$

- $\left(X_{1}=\{c\}, X_{2}=\{a, b\}, X_{3}=\{d\}\right)$ is a syntactic decomposition scheme of Σ
- $\Sigma \mid \bar{c}=\underbrace{(a \vee b)}_{\Sigma_{2}^{\bar{c}}} \wedge \underbrace{d}_{\Sigma_{3}^{\bar{c}}}$
- $\Sigma \mid c=\underbrace{(a \vee b)}_{\Sigma_{2}^{c}} \wedge \underbrace{\top}_{\Sigma_{3}^{c}}$

Another Decision-DNNF Representation of Σ

A decision-DNNF
ite $\left(\gamma_{1}\right.$ canonical term over X_{1}, decision- $\operatorname{DNNF}\left(\Sigma_{2}^{\gamma_{1}}\right) \wedge$ decision $\left.-\operatorname{DNNF}\left(\Sigma_{3}^{\gamma_{1}}\right)\right)$ associated with the syntactic decomposition scheme of Σ given by

$$
\left(X_{1}=\{c\}, X_{2}=\{a, b\}, X_{3}=\{d\}\right)
$$

is

Targeting "Small-sized" Decision-DNNF Representations

- Every CNF Σ has a syntactic decomposition scheme: ($\operatorname{Var}(\Sigma), \emptyset, \emptyset)$
- This one leads to a compiled representation of Σ as a decision-DNNF which boils down to a decision tree or to an FBDD representation if caching is exploited!
- Better syntactic decomposition schemes (i.e., with decomposable \wedge-nodes, leading to "smaller" decision-DNNF compiled forms) are sought for

Overview

SAT Solving
From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

The Power of Decomposition

Consider a syntactic decomposition scheme of $\Sigma:\left(X_{1}, X_{2}, X_{3}\right)$ such that $\#\left(X_{i}\right)=x_{i}(i \in\{1, \ldots, 3\})$

- Suppose that every decision-DNNF representation of Σ has a size which is a fraction $k(0<k \leq 1)$ of the search space of all interpretations explored for generating it (which implies that the corresponding compilation time will be at least as high)
- The size of a decision-DNNF representation of Σ will be $2^{x_{1}} \times\left(k \times 2^{x_{2}}+k \times 2^{x_{3}}\right)$
- $2^{x_{1}} \times\left(k \times 2^{x_{2}}+k \times 2^{x_{3}}\right)<k \times 2^{x_{1}+x_{2}+x_{3}}$ unless $x_{2} \leq 2$ and $x_{3} \leq 2$
\Rightarrow This explains why introducing decomposable \wedge-nodes (and not only decision nodes) in the compiled form is useful

Efficient Syntactic Decomposition Schemes

- The syntactic decomposition scheme $\left(X_{1}, X_{2}, X_{3}\right)$ of Σ leads to a decision-DNNF of Σ which is as small as
- x_{1} is small
- x_{2} is close to $x_{3}: x_{2}^{*}=\left\lfloor\frac{x_{2}+x_{3}}{2}\right\rfloor$ and $x_{3}^{*}=\left\lceil\frac{x_{2}+x_{3}}{2}\right\rceil$ minimize the value of $2^{x_{2}}+2^{x_{3}}$ when the sum $x_{2}+x_{3}$ is fixed
- An efficient syntactic decomposition scheme $\left(X_{1}, X_{2}, X_{3}\right)$ of Σ is one minimizing the two criteria (size of the cut set, balance of the decomposition) when possible

The Two Criteria are Antagonistic!

\Rightarrow Trade-offs must be looked for! One typically relaxes the second optimality criterion by asking only that the two disjoint components forming the decomposition have approximately the same cardinal

Complexity of Finding out "Good" Syntactic Decomposition Schemes

- Finding a minimal cut X_{1} of the primal graph of Σ can be achieved in polynomial time (e.g. using Stoer-Wagner algorithm which is in time $\left.\mathcal{O}\left(|V||E|+|V|^{2} \log _{2}|V|\right)\right)$
- Adding a balance constraint

$$
\left|\#\left(X_{2}\right)-\#\left(X_{3}\right)\right| \leq \alpha
$$

where α is a constant, renders the problem NP-hard
\Rightarrow How to maintain small enough in practice the complexity of finding out "good" syntactic decomposition schemes?

Overview

SAT Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers
Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Several Strategies can be Considered

1. Using state-of-the-art branching heuristics for SAT and detecting decompositions in a lazy fashion
2. Relaxing the optimality criteria for syntactic decompositions scheme (use local search techniques for graph partitioning)
3. Avoiding to compute a syntactic decomposition scheme at each decision node
a. Prior to the compilation of Σ, compute a decomposition tree (dtree) for guiding the decompositions
b. Use a graph partitioner sparingly during the compilation process on a simplified graph, taking advantage of in-processing techniques (especially literal equivalence) on Σ

- Compilers:
- The Dsharp compiler is based on 1 .
- The C2D compiler is based on 2., and 3.a.
- The D4 compiler is based on 2., and 3.b.

Overview

SAT Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers
Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

The VSADS Branching Heuristics

- In the SAT case and in the compilation case, the smaller the search tree the better
- To detect conflicts as soon as possible, SAT solvers take advantage of look-back branching heuristics
- Hence it makes sense to use such heuristics in the compilation case
- VSADS is a look-back branching heuristics that is based on VSIDS and the number of occurrences of the variables in the clauses

A Pseudo-Code of Dsharp

Algorithm 3: Dsharp(Σ)

input : a CNF formula Σ
output: the root node N of a decision-DNNF representation of Σ
$1 \mathrm{~S} \leftarrow \operatorname{solve}(\Sigma)$;
2 if $S=\{\emptyset\}$ then return leaf (\perp);
3 if $\operatorname{Var}(\Sigma)=\emptyset$ then return aNode(S, [leaf($(T)])$;
4 if cache $(\Sigma) \neq$ nil then return aNode(S, [cache $(\Sigma)])$;
5 comps \leftarrow connectedComponents (Σ);
$6 L N_{d} \leftarrow[] ;$
7 foreach $c \in$ comps do
$8 \quad v \leftarrow \operatorname{VSADS}(\operatorname{Var}(c))$;
$9 \quad N_{d} \leftarrow i t e(v, \operatorname{Dsharp}(c \mid \neg v)$, Dsharp $(c \mid v))$;
$10 \quad L N_{d} \leftarrow \operatorname{add}\left(N_{d}, L N_{d}\right)$;
${ }_{11} N_{\wedge} \leftarrow \operatorname{aNode}\left(S, L N_{d}\right)$;
12 cache $(\Sigma) \leftarrow N_{\wedge}$;
13 return N_{\wedge}

Overview

SAT Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers
Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Decomposition Trees

A decomposition tree (dtree) for a CNF Σ is a full binary tree, with leaves in one-to-one correspondance with the clauses of Σ

$$
\Sigma=\underbrace{(a \vee b \vee c)}_{\delta_{1}} \wedge \underbrace{(a \vee b \vee \bar{c})}_{\delta_{2}} \wedge \underbrace{(c \vee d)}_{\delta_{3}}
$$

Cutsets

Each internal node of a dtree is associated with a cutset

$$
\Sigma=\underbrace{(a \vee b \vee c)}_{\delta_{1}} \wedge \underbrace{(a \vee b \vee \bar{c})}_{\delta_{2}} \wedge \underbrace{(c \vee d)}_{\delta_{3}}
$$

For every internal node N, let N^{\prime} and N^{r} its two children

- $\operatorname{Var}(N)=\operatorname{Var}\left(N^{\prime}\right) \cup \operatorname{Var}\left(N^{r}\right)$
- $\operatorname{Cutset}(N)=\left(\operatorname{Var}\left(N^{\prime}\right) \cap\right.$ $\left.\operatorname{Var}\left(N^{r}\right)\right) \backslash \operatorname{AncCutset}(N)$
- AncCutset $(N)=$
$\bigcup_{N^{\prime}}$ ancestor of ${ }_{N} \operatorname{Cutset}\left(N^{\prime}\right)$

Decomposition Trees

Dtrees can be computed in various ways:

- in a bottom-up way, starting with an elimination ordering (i.e., a strict, total ordering $<$ over $\operatorname{Var}(\Sigma)$)
- several heuristics exist for determining an elimination ordering leading to "good" decompositions
- min-degree: order the variables of Σ in an ascending way w.r.t. their incidence degree in the primal graph of Σ
- min-fill: order the variables of Σ in an ascending way w.r.t. their number of neighbors which are not pairwise connected in the primal graph of Σ
- in a top-down way, using a graph partitioner

Back to the Example: Heuristics

$$
\Sigma=\underbrace{(a \vee b \vee c)}_{\delta_{1}} \wedge \underbrace{(a \vee b \vee \bar{c})}_{\delta_{2}} \wedge \underbrace{(c \vee d)}_{\delta_{3}}
$$

Min-degree and min-fill leads to the same ordering for this example:

$$
d<a<b<c
$$

In a Bottom-Up Way: A Pseudo-Code of dtree-bu

Algorithm 4: dtree-bu($\Sigma,<)$
input : a CNF formula Σ and an elimination ordering $<$ over $\operatorname{Var}(\Sigma)$
output: a dtree dt for Σ
$1 \mathrm{~F} \leftarrow\left\{\delta_{i} \in \Sigma\right\}$;
$2 \operatorname{Var} \leftarrow \operatorname{Var}(\Sigma)$;
3 while Var $\neq \emptyset$ do
$\vee \leftarrow$ head (Var, $<$);
gather every dtree of F with a leaf containing v into a single dtree;
remove v from Var
4 Gather every dtree of F into a single dtree dt;
5 return dt

Back to the Example

$$
\begin{gathered}
\Sigma=\underbrace{(a \vee b \vee c)}_{\delta_{1}} \wedge \underbrace{(a \vee b \vee \bar{c})}_{\delta_{2}} \wedge \underbrace{(c \vee d)}_{\delta_{3}} \\
d<a<b<c
\end{gathered}
$$

In a Top-Down Way

One exploits a graph partitioner for finding a cutset in the dual hypergraph of Σ (if possible, a cutset of "small size" leading to a balanced decomposition)

$$
\Sigma=\underbrace{(a \vee b \vee c)}_{\delta_{1}} \wedge \underbrace{(a \vee b \vee \bar{c})}_{\delta_{2}} \wedge \underbrace{(c \vee d)}_{\delta_{3}}
$$

In a Top-Down Way: A Pseudo-Code of dtree-td

```
Algorithm 5: dtree-td( \(\Sigma\) )
input : a CNF formula \(\Sigma\)
output: the root \(N\) of a dtree for \(\Sigma\)
```

1 if Σ has a decomposition $\Sigma_{1} \wedge \Sigma_{2}$ then

```
N}\leftarrow\operatorname{node(\emptyset,dtree-td}(\mp@subsup{\Sigma}{1}{}),dtree-td(\Sigma\mp@subsup{\Sigma}{2}{})
```

2 else
while there exist two distinct clauses connected by a hyperedge in the dual hypergraph of Σ do
$C \leftarrow \operatorname{HGP}(\Sigma)$;
$\Sigma_{1} \leftarrow$ one connected component of Σ simplified by removing from its clauses all the variables from C;
$\Sigma_{2} \leftarrow$ the union of the other connected components of Σ simplified by removing from its clauses all the variables from C; $N \leftarrow \operatorname{node}\left(C, \operatorname{dtree}-t d\left(\Sigma_{1}\right)\right.$, dtree-td $\left.\left(\Sigma_{2}\right)\right) ;$

3 return N

Back to the Example

$$
\Sigma=\underbrace{(a \vee b \vee c)}_{\delta_{1}} \wedge \underbrace{(a \vee b \vee \bar{c})}_{\delta_{2}} \wedge \underbrace{(c \vee d)}_{\delta_{3}}
$$

A Pseudo-Code of C2D

Algorithm 6: C2D(Σ, N)
input : a CNF formula Σ and the root N of a dtree dt for Σ
output: the root M of a decision-DNNF representation of Σ
$1 S \leftarrow \operatorname{solve}(\Sigma)$;
2 if $S=\{\emptyset\}$ then return leaf (\perp);
3 if $\operatorname{Var}(\Sigma)=\emptyset$ then return aNode(S, [leaf($(T)])$;
4 if cache $(\Sigma) \neq$ nil then return aNode(S, [cache $(\Sigma)])$;
5 if N reduces to a leaf node labelled by δ then
L return a decision-DNNF representation of δ
else
$C \leftarrow$ label (N);
$M \leftarrow$ ite $\left(\gamma_{1}\right.$ canonical term over $\left.C, \operatorname{C2D}\left(\Sigma \mid \gamma_{1}, N^{2}\right), \operatorname{C2D}\left(\Sigma \mid \gamma_{1}, N^{3}\right)\right)$;
/* $\left(C, \operatorname{Var}\left(N^{2}\right), \operatorname{Var}\left(N^{3}\right)\right)$ is by construction a syntactic decomposition scheme of Σ
cache $(\Sigma) \leftarrow M$;
6 return M

Overview

SAT Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers
Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Static vs. Dynamic Decomposition

- When a dtree is computed first for finding out the cutsets leading to decompositions, the same cutsets are considered whatever their ancestor cutsets (hence whatever the assignments γ of their variables)
- The CNF formula conditioned by γ which results at the current decision node of the search tree is not considered

$\{a, b\}$ is considered as a cutset whatever c has been assigned to true or to false

Static vs. Dynamic Decomposition

- Pros: No need to call a hypergraph partitioner for every assignment γ of the variables from the ancestor cutset (this is an expensive operation)
- Cons: $\Sigma \mid \gamma$ may heavily vary depending on γ, so that better syntactic decomposition schemes could be obtained if the assignments themselves were taken into account

The Decision-DNNF Compiler D4

- D4: a Decision-DNNF compiler based on Dynamic Decomposition
- Input: a CNF formula Σ
- Output: a decision-DNNF representation equivalent to the input
- D4 is a top-down compiler which generates a Decision-DNNF representation by following the trace of a SAT solver
- D4 is based on the same ingredients as the previous compilers C2D and Dsharp: disjoint component analysis, conflict analysis and non-chronological backtracking, component caching

D4: What's Up?

- The variable selection heuristics is dynamic like Dsharp (and unlike C2D)
- It is based on a partitioning of the dual hypergraph of the input CNF like C2D (and unlike Dsharp)
- Two new features:
- hypergraph partitioning (based on the PaToH partitioner) is used sparingly and during the search for finding decompositions
- a set of simplification rules are also used to minimize the time spent in the partitioning steps and to promote the quality of the decompositions

A Pseudo-Code of D4

```
Algorithm 7: D4( \(\Sigma, L V\) )
input : a CNF formula \(\Sigma\) and a list of variables \(L V\) (empty at start)
output: the root node \(N\) of a decision-DNNF representation of \(\Sigma\)
\(1 \mathrm{~S} \leftarrow \operatorname{solve}(\Sigma)\);
2 if \(S=\{\emptyset\}\) then return leaf \((\perp)\);
3 if \(\operatorname{Var}(\Sigma)=\emptyset\) then return aNode(S, \([\operatorname{leaf}(T)])\);
4 if cache \((\Sigma) \neq\) nil then return aNode(S, [cache( \(\Sigma)])\);
5 comps \(\leftarrow\) connectedComponents \((\Sigma)\);
\(6 L N_{d} \leftarrow[] ;\)
7 foreach \(c \in\) comps do
\(8 \quad L V_{c} \leftarrow \operatorname{restrict}(L V, \operatorname{Var}(c))\);
9 if \(L V_{c}=\emptyset\) or \(\#(\operatorname{Var}(S) \cap \operatorname{Var}(c))>\frac{1}{10} \#(\operatorname{Var}(c))\) then
                    \(L L V_{c} \leftarrow \operatorname{sort}(\operatorname{HGP}(c))\);
\(v \leftarrow \operatorname{head}\left(L V_{c}\right)\);
\(L V_{c} \leftarrow \operatorname{tail}\left(L V_{c}\right)\);
\(N_{d} \leftarrow i t e\left(v, \mathrm{D} 4\left(c \mid \neg v, L V_{c}\right), \mathrm{D} 4\left(c \mid v, L V_{c}\right)\right)\);
\(L N_{d} \leftarrow \operatorname{add}\left(N_{d}, L N_{d}\right) ;\)
\(14 N_{\wedge} \leftarrow \operatorname{aNode}\left(S, L N_{d}\right)\);
15 cache \((\Sigma) \leftarrow N_{\wedge}\);
16 return \(N_{\wedge}\)
```


Improving the Hypergraph Partitioning Steps

- We avoid calling HGP at each recursion step or each time a decision node must be generated
- We designed some specific rules which are used inside HGP and aim at simplifying the hypergraph associated with the current formula before calling PaToH on it
- The simplification achieved can also lead PaToH to find better decompositions
- we exploit an algorithm for the detection of literal equivalences based on BCP (more details on Wednesday!)
- we simplify the dual hypergraph of the resulting formula, removing some useless nodes and hyperedges

Empirical Evaluation

- 703 CNF instances from the SAT LIBrary
- 8 data sets: BN (Bayesian networks) (192), BMC (Bounded Model Checking) (18), Circuit (41), Configuration (35), Handmade (58), Planning (248), Random (104), Qif (7) (Quantitative Information Flow analysis - security)
- Experiments conducted on Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB RAM on Linux CentOS
- A time-out of 1 h and a memory-out of 7.6 GiB has been considered for each instance

Comparison with C2D (compilation times)

Comparison with C2D (sizes of the compiled forms)

D4 as a Model Counter

References (for further reading)

A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):608-647, 2001.
A. Darwiche. New advances in compiling cnf into decomposable negation normal form. ECAl'04, pages 328-332, 2004.
J.-M. Lagniez, and P. Marquis. An Improved Decision-DNNF Compiler. IJCAI'17, pages 667-673, 2017.

Top-Down Knowledge Compilation

Jean-Marie Lagniez \& Pierre Marquis*

CRIL, U. Artois \& CNRS
Institut Universitaire de France*
France

