Direct Access for Conjunctive Queries with Negations
 Florent Capelli, Oliver Irwin

CRIL, Université d'Artois
April 19, 2024

Direct Access on Join Queries

Join Queries

Join Query: $Q\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{k} R_{i}\left(\mathbf{x}_{\mathbf{i}}\right)$ where $\mathbf{x}_{\mathbf{i}}$ is a tuple over $X=\left\{x_{1}, \ldots, x_{n}\right\}$

Join Queries

Join Query: $Q\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{k} R_{i}\left(\mathbf{x}_{\mathbf{i}}\right)$
where $\mathbf{x}_{\mathbf{i}}$ is a tuple over $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Example:
$Q($ city, country, name,$i d)=$ People $(i d$, name, city $) \wedge$ Capitals (city, country $)$ People

id	name	city
1	Alice	Paris
2	Bob	Lens
3	Chiara	Rome
4	Djibril	Berlin
5	Émile	Dortmund
6	Francesca	Rome

Capitals

city	country
Berlin	Germany
Paris	France
Rome	Italy

Join Queries

Join Query: $Q\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{k} R_{i}\left(\mathbf{x}_{\mathbf{i}}\right)$
where $\mathbf{x}_{\mathbf{i}}$ is a tuple over $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Example:
$Q($ city, country, name,$i d)=$ People $(i d$, name, city $) \wedge$ Capitals (city, country $)$ People

id	name	city
1	Alice	Paris
2	Bob	Lens
3	Chiara	Rome
4	Djibril	Berlin
5	Émile	Dortmund
6	Francesca	Rome

Capitals

city	country
Berlin	Germany
Paris	France
Rome	Italy

Join Queries

$$
\begin{gathered}
\text { Join Query: } Q\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{k} R_{i}\left(\mathbf{x}_{\mathbf{i}}\right) \\
\text { where } \mathbf{x}_{\mathbf{i}} \text { is a tuple over } X=\left\{x_{1}, \ldots, x_{n}\right\} \\
\text { Example: }
\end{gathered}
$$

$Q($ city, country, name,$i d)=$ People $(i d$, name, city $) \wedge$ Capitals (city, country $)$ People

id	name	city
1	Alice	Paris
2	Bob	Lens
3	Chiara	Rome
4	Djibril	Berlin
5	Émile	Dortmund
6	Francesca	Rome

Capitals	
city	country
Berlin	Germany
Paris	France
Rome	Italy

$$
Q(\mathbb{D})
$$

city	country	name	id
Paris	France	Alice	1
Rome	Italy	Chiara	3
Berlin	Germany	Djibril	4
Rome	Italy	Francesca	6

Direct Access

Quickly access $Q(\mathbb{D})[k]$, the $k^{t h}$ element of $Q(\mathbb{D})$.
$Q(\mathbb{D})$

city	country	name	id
Paris	France	Alice	1
Rome	Italy	Chiara	3
Berlin	Germany	Djibril	4
Rome	Italy	Francesca	6

Direct Access

Quickly access $Q(\mathbb{D})[k]$, the $k^{t h}$ element of $Q(\mathbb{D})$.
$Q(\mathbb{D})$

city	country	name	id
Paris	France	Alice	1
Rome	Italy	Chiara	3
Berlin	Germany	Djibril	4
Rome	Italy	Francesca	6

$Q(\mathbb{D})[2] ?$
(Rome, Italy, Chiara, 3).

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

city	country	name	id
\ldots	\ldots	\ldots	\ldots
Berlin	Germany	Djibril	4
\ldots	\ldots	\ldots	\ldots
Paris	France	Alice	1
\ldots	\ldots	\ldots	\ldots
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6

$$
Q(\mathbb{D})[1432]=? ?
$$

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

city	country	name	id
\ldots	\ldots	\ldots	\ldots
Berlin	Germany	Djibril	4
\ldots	\ldots	\ldots	\ldots
Paris	France	Alice	1
\ldots	\ldots	\ldots	\ldots
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6
\ldots	\ldots	\ldots	\ldots

$$
Q(\mathbb{D})[1432]=? ?
$$

Precomputation : $O(\# Q(\mathbb{D}))$ at least (may be worst), very costly Access: $O(1)$, nearly free

Naive Direct Access

Naive algorithm: materialize $Q(\mathbb{D})$ in an array, sort it. Access.

city	country	name	id
\ldots	\ldots	\ldots	\ldots
Berlin	Germany	Djibril	4
\ldots	\ldots	\ldots	\ldots
Paris	France	Alice	1
\ldots	\ldots	\ldots	\ldots
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6
\ldots	\ldots	\ldots	\ldots

$$
Q(\mathbb{D})[1432]=? ?
$$

Precomputation : $O(\# Q(\mathbb{D}))$ at least (may be worst), very costly

$$
\text { Access : } O(1) \text {, nearly free }
$$

Orders

- Order by weights
- Lexicographical orders
- order on the vars of Q
- order on domain D of \mathbb{D}

Orders

- Order by weights
- Lexicographical orders
- order on the vars of Q
- order on domain D of \mathbb{D}

Variable order (city, country, name, id) :

city	country	name	id
Berlin	Germany	Djibril	4
Paris	France	Alice	1
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6

Orders

- Order by weights
- Lexicographical orders
- order on the vars of Q
- order on domain D of \mathbb{D}

Variable order (city, country, name, id) :

city	country	name	id
Berlin	Germany	Djibril	4
Paris	France	Alice	1
Rome	Italy	Chiara	3
Rome	Italy	Francesca	6

In this talk: only lexicographical orders.

Applications

Direct Access generalizes many tasks that have been previously studied:

- Uniform sampling without repetitions
- Ranked enumeration
- Counting queries:
- how many answers between τ_{1} and τ_{2} ?
- how many answers extend a partial answer etc.

Beating the Naive Approach

Beating Naive Direct Access

Naive Direct Access:

- Preprocessing at least $O(\# Q(\mathbb{D}))$.
- Access time O (1) .

Can we have better preprocessing and reasonable access time?

Beating Naive Direct Access

Naive Direct Access:

- Preprocessing at least $O(\# Q(\mathbb{D}))$.
- Access time O (1) .

Can we have better preprocessing and reasonable access time?

For example:

- $O(|\mathbb{D}|)$ preprocessing
- $O(\log |\mathbb{D}|)$ access time

Complexity of Direct Access

Computing $\# Q(\mathbb{D})$ given Q and \mathbb{D} is $\# P$-hard.
No Direct Access algorithm with good guarantees for every Q and \mathbb{D}.

Complexity of Direct Access

Computing $\# Q(\mathbb{D})$ given Q and \mathbb{D} is $\# P$-hard.

Data complexity assumption: for a fixed Q, what is the best preprocessing $f(|\mathbb{D}|)$ for an access time $O($ polylog $|\mathbb{D}|)$?

[^0] combined complexity.

An easy query?

$$
Q(a, b, c)=A(a, b) \wedge B(b, c) .
$$

An easy query?

$$
Q(a, b, c)=A(a, b) \wedge B(b, c) .
$$

Direct Access for lexicographical order induced by (a, b, c) ?

- Precomputation $O(|\mathbb{D}|)$
- Access time $O(\log |\mathbb{D}|)$

An easy query?

$$
Q(a, b, c)=A(a, b) \wedge B(b, c) .
$$

Direct Access for lexicographical order induced by (a, b, c) ?

- Precomputation $O(|\mathbb{D}|)$
- Access time $O(\log |\mathbb{D}|)$

\mathbf{a}	\mathbf{b}			
0	0			
1	1			
2	1	\quad	\mathbf{b}	\mathbf{c}
:---	:---			
0	0			
0	1			
0	2			
1	1			
1	2			

Precomputation :

- $\# Q\left(0,0,{ }_{-}\right)=3$
- $\# Q\left(1,1,,_{-}\right)=2$
- $\# Q\left(2,1,{ }_{-}\right)=2$

An easy query?

$$
Q(a, b, c)=A(a, b) \wedge B(b, c)
$$

Direct Access for lexicographical order induced by (a, b, c) ?

- Precomputation $O(|\mathbb{D}|)$
- Access time $O(\log |\mathbb{D}|)$

\mathbf{a}	\mathbf{b}			
0	0			
1	1			
2	1	\quad	0	0
:---	:---			
0	1			
0	2			
1	1			
1	2			

Precomputation :

- $\# Q\left(0,0,{ }_{-}\right)=3$
- $\# Q\left(1,1,{ }_{-}\right)=2$
- $\# Q\left(2,1,{ }_{-}\right)=2$

Access $Q[5]$:

- $a=0, b=0$: not enough solutions
- $a=1, b=1$: enough! 3 solutions smaller than ($\left.1,1,,_{\text {_ }}\right)$
- Look for the second solution of $B\left(1,{ }_{-}\right): a=1, b=1, c=2$

A not so easy query $Q(a, c, b)=A(a, b) \wedge B(b, c)$.

Direct Access for lexicographical order induced by (a, c, b) ?

- Precomputation $O\left(|\mathbb{D}|^{2}\right)$
- Access time $O(\log |\mathbb{D}|)$

A not so easy query

$$
Q(a, c, b)=A(a, b) \wedge B(b, c) .
$$

Direct Access for lexicographical order induced by (a, c, b) ?

- Precomputation $O\left(|\mathbb{D}|^{2}\right)$
- Access time $O(\log |\mathbb{D}|)$

Reduces to multiplying two $\{0,1\}$-matrices M, N over \mathbb{N} :

- $(i, j) \in A$ iff $M[i, j]=1,(j, k) \in N$ iff $N[j, k]=1$
- $\# Q\left(i, j,{ }_{-}\right)=(M N)[i, j]$
- Direct Access can be used to find $\# Q\left(i, j,{ }_{-}\right)$with $O(\log |\mathbb{D}|)$ queries.

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :
- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q, \pi)}\right)$

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :
- preprocessing $\tilde{O}\left(|\mathbb{D}|{ }^{(Q, \pi)}\right)$
- access $O(\log |\mathbb{D}|)$

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :
- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q, \pi)}\right)$
- access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :
- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q, \pi)}\right)$
- access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:
- if possible with $\tilde{O}\left(|\mathbb{D}|^{k}\right)$ preprocessing with $k<\iota(Q, \pi)$

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :
- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q, \pi)}\right)$
- access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:
- if possible with $\tilde{O}\left(|\mathbb{D}|^{k}\right)$ preprocessing with $k<\iota(Q, \pi)$
- then Zero-Clique Conjecture is false
(we can find 0 -weighted k-cliques in graphs in time $<|G|^{k-\varepsilon}$)

Characterizing preprocessing time

Given a query Q and order π on its variables, we can compute $\iota(Q, \pi)$ such that:

- Tractable Direct access for Q on \mathbb{D} :
- preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q, \pi)}\right)$
- access $O(\log |\mathbb{D}|)$
- Tight fine-grained lower bounds:
- if possible with $\tilde{O}\left(|\mathbb{D}|^{k}\right)$ preprocessing with $k<\iota(Q, \pi)$
- then Zero-Clique Conjecture is false
(we can find 0 -weighted k-cliques in graphs in time $<|G|^{k-\varepsilon}$)
- Function ι closely related to fractional hypertree width.

1. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries, N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, M. Riedewald
2. Tight Fine-Grained Bounds for Direct Access on Join Queries, K. Bringmann, N. Carmeli, S. Mengel

End of the story?

So, if we understand everything for Direct Access and lexicographical orders, what is our contrilbution?

Signed Join Queries

$$
\begin{gathered}
\text { Definition } \\
Q=\bigwedge_{i=1}^{k} P_{i}\left(\mathbf{z}_{\mathbf{i}}\right) \bigwedge_{i=1}^{l} \neg N_{i}\left(\mathbf{z}_{\mathbf{i}}\right) \\
\text { Negation interpreted over a given domain } D:
\end{gathered}
$$

Definition

$$
Q=\bigwedge_{i=1}^{k} P_{i}\left(\mathbf{z}_{\mathbf{i}}\right) \bigwedge_{i=1}^{l} \neg N_{i}\left(\mathbf{z}_{\mathbf{i}}\right)
$$

Negation interpreted over a given domain D :

$$
\begin{array}{lll}
& N & \\
x_{1} & x_{2} & x_{3} \\
\hline 0 & 1 & 0
\end{array}
$$

Definition

$$
Q=\bigwedge_{i=1}^{k} P_{i}\left(\mathbf{z}_{\mathbf{i}}\right) \bigwedge_{i=1}^{l} \neg N_{i}\left(\mathbf{z}_{\mathbf{i}}\right)
$$

Negation interpreted over a given domain D :

$\neg N$ on $\{0,1\}$		
x_{1}	x_{2}	x_{3}
0	0	0
0	0	1
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Definition

$$
Q=\bigwedge_{i=1}^{k} P_{i}\left(\mathbf{z}_{\mathbf{i}}\right) \bigwedge_{i=1}^{l} \neg N_{i}\left(\mathbf{z}_{\mathbf{i}}\right)
$$

Negation interpreted over a given domain D :

\[

\]

- $\neg N\left(x_{1}, \ldots, x_{k}\right)$ encoded with $|D|^{k}-\# N$ tuples.
- Relation with SAT: $\neg N$ is $x_{1} \vee \neg x_{2} \vee x_{3}$

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

\square

- $Q(\mathbb{D})[1]$?

- $Q(\mathbb{D})[2]$?
- $Q(\mathbb{D})[3]$?
- $Q(\mathbb{D})[k]$?

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

- $Q(\mathbb{D})[1] ? x_{1}=0, x_{2}=0, x_{3}=0$ ie

	N	
x_{1}	x_{2}	x_{3}
0	1	0
1	0	1

- $Q(\mathbb{D})[2]$?
- $Q(\mathbb{D})[3]$?
- $Q(\mathbb{D})[k]$?

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

- $Q(\mathbb{D})[1] ? x_{1}=0, x_{2}=0, x_{3}=0$ ie

	N	
x_{1}	x_{2}	x_{3}
0	1	0
1	0	1

- $Q(\mathbb{D})[2] ? x_{1}=0, x_{2}=0, x_{3}=1$ ie $[1]_{2}$!
- $Q(\mathbb{D})[3]$?
- $Q(\mathbb{D})[k]$?

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

- $Q(\mathbb{D})[1] ? x_{1}=0, x_{2}=0, x_{3}=0$ ie

	N	
x_{1}	x_{2}	x_{3}
0	1	0
1	0	1

- $Q(\mathbb{D})[2] ? x_{1}=0, x_{2}=0, x_{3}=1$ ie $[1]_{2}$!
- $Q(\mathbb{D})[3]$?
$x_{1}=0, x_{2}=1, x_{3}=0$ ie $[2]_{2}$?
- $Q(\mathbb{D})[k]$?

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

- $Q(\mathbb{D})[1] ? x_{1}=0, x_{2}=0, x_{3}=0$ ie

	N	
x_{1}	x_{2}	x_{3}
0	1	0
1	0	1

- $Q(\mathbb{D})[2] ? x_{1}=0, x_{2}=0, x_{3}=1$ ie $[1]_{2}$!
- $Q(\mathbb{D})[3]$?
$x_{1}=0, x_{2}=1, x_{3}=1$ ie $[3]_{2}!$
- $Q(\mathbb{D})[k]$?

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

- $Q(\mathbb{D})[1] ? x_{1}=0, x_{2}=0, x_{3}=0$ ie

	N	
x_{1}	x_{2}	x_{3}
0	1	0
1	0	1

- $Q(\mathbb{D})[2] ? x_{1}=0, x_{2}=0, x_{3}=1$ ie $[1]_{2}$!
- $Q(\mathbb{D})[3]$?
$x_{1}=0, x_{2}=1, x_{3}=1$ ie $[3]_{2}!$
- $Q(\mathbb{D})[k]$? $[k-1+p]_{2}$
where p \#tuples $\leq[k]_{2}$

Positive Encoding not Optimal

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\neg N\left(x_{1}, \ldots, x_{n}\right), \text { domain }\{0,1\}
$$

\square
Positive encoding: preprocessing $O\left(2^{n}\right)$

- $Q(\mathbb{D})[1] ? x_{1}=0, x_{2}=0, x_{3}=0$ ie

	N	
x_{1}	x_{2}	x_{3}
0	1	0
1	0	1

- $Q(\mathbb{D})[2] ? x_{1}=0, x_{2}=0, x_{3}=1$ ie [1] !
- $Q(\mathbb{D})[3]$?
$x_{1}=0, x_{2}=1, x_{3}=1$ ie $[3]_{2}!$
- $Q(\mathbb{D})[k]$? $[k-1+p]_{2}$ where p \#tuples $\leq[k]_{2}$

Hardness of subqueries

$$
Q_{1}=R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1) \quad Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

Hardness of subqueries

$$
Q_{1}=R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1) \quad Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

linear preprocessing

Hardness of subqueries

$$
Q_{1}=R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1) \quad Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

linear preprocessing

non-linear preprocessing

Hardness of subqueries

$$
Q_{1}=R(1,2,3) \wedge S(1,2) \wedge T(2,3) \wedge U(3,1) \quad Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

linear preprocessing

Subqueries and negative atoms

$$
\begin{gathered}
Q_{1}{ }^{\prime}=\neg R(1,2,3) \\
\wedge S(1,2) \wedge T(2,3) \wedge U(3,1)
\end{gathered}
$$

$$
Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

non-linear preprocessing (triangle)

Subqueries and negative atoms

$$
\begin{gathered}
Q_{1}{ }^{\prime}=\neg R(1,2,3) \\
\wedge S(1,2) \wedge T(2,3) \wedge U(3,1)
\end{gathered}
$$

Equivalent to Q_{2} if $R=\emptyset$

$$
Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

non-linear preprocessing (triangle)

Subqueries and negative atoms

$$
\begin{aligned}
Q_{1}^{\prime} & =\neg R(1,2,3) \\
\wedge S(1,2) & \wedge T(2,3) \wedge U(3,1)
\end{aligned}
$$

$$
Q_{2}=S(1,2) \wedge T(2,3) \wedge U(3,1)
$$

non-linear preprocessing (triangle)
Equivalent to Q_{2} if $R=\emptyset$

$$
\text { DA for } Q=P \wedge N \text { implies DA for } Q=P \wedge N^{\prime} \text { for every } N^{\prime} \subseteq N \text { ! }
$$

Measuring hardness of SJQ

Good candidate for $Q=Q^{+} \wedge Q^{-}$:

Signed-HyperOrder Width
show $(Q, \pi)=\max _{Q^{\prime} \subseteq Q^{-}} \iota\left(Q^{+} \wedge Q^{\prime}, \pi\right)$
For Q a (positive) JQ, and π a variable ordering, we can solve DA with

- Preprocessing $\tilde{O}\left(|\mathbb{D}|^{\iota(Q, \pi)}\right)$
- Access time $O(\log |\mathbb{D}|)$

Measuring hardness of SJQ

Good candidate for $Q=Q^{+} \wedge Q^{-}$:

Signed-HyperOrder Width

$$
\operatorname{show}(Q, \pi)=\max _{Q^{\prime} \subseteq Q^{-} \iota}\left(Q^{+} \wedge Q^{\prime}, \pi\right)
$$

For Q a signed JQ, and π a variable ordering, we can solve DA with

- Preprocessing $\left.\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(~} Q, \pi\right)\right)$
- Access time $O(\log |\mathbb{D}|)$

Our contribution : new island of tractability for Signed JQ!

A word on show

Signed HyperOrder Width (and incidentally, our result) generalizes:

- β-acyclicity (\#SAT and \#NCQ are already known tractable)
- signed-acyclicity (Model Checking for SCQ known to be tractable)
- Nest set width (SAT / Model Checking for NCQ known to be tractable)

Basically, everything that is known to be tractable on SCQ/NCQ.

1. Understanding model counting for β-acyclic CNF-formulas, J. Brault-Baron, F. C., S. Mengel
2. De la pertinence de l'énumération: complexité en logiques propositionnelle et du premier ordre, J. Brault-Baron
3. Tractability Beyond β-Acyclicity for Conjunctive Queries with Negation, M. Lanzinger

Our algorithm: a circuit approach

Relational Circuits

x_{1}	x_{2}	x_{3}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	1
1	0	2
1	1	1
1	1	2
1	2	0
1	2	1
2	0	1
2	0	2
2	2	1
2	2	2

Relational Circuits

Relational Circuits

x_{1}	x_{2}	x_{3}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	1
1	0	2
1	1	1
1	1	2
1	2	0
1	2	1
2	0	1
2	0	2
2	2	1
2	2	2

Ordered Relational Circuits

Factorized representation of relation $R \subseteq D^{X}$:

- Inputs gates : \top \& \perp
- Decision gates
- Cartesian products: \times-gates

Ordered Relational Circuits

Factorized representation of relation $R \subseteq D^{X}$:

- Inputs gates : \top \& \perp
- Decision gates
- Cartesian products: \times-gates

Ordered: decision gates below x_{i} only mention x_{j} with $j>i$.

Direct Access on Relational Circuits

For C on domain D, variables x_{1}, \ldots, x_{n}, DA possible :

- Preprocessing: $O(|C| \log |D|)$
- Access time: $O(n \log |D|)$

Preprocessing

Preprocessing

Idea : for each gate v over x_{i} and for each domain value d

Preprocessing

Idea : for each gate v over x_{i} and for each domain value d

Preprocessing

Idea : for each gate v over x_{i} and for each domain value d

compute the size of the relation where x_{i} is set to a value $d^{\prime} \leq d$

Preprocessing

Preprocessing

Preprocessing

Preprocessing

Preprocessing

Preprocessing

Direct Access 7th solution

Compute the $7^{\text {th }}$ solution

Direct Access 7th solution

Compute the $7^{\text {th }}$ solution

Direct Access 7th solution

Compute the $7^{\text {th }}$ solution

Direct Access 7th solution

Compute the $7^{\text {th }}$ solution $\rightarrow 111$

Direct Access the 13th solution

Compute the $13^{\text {th }}$ solution

Direct Access the 13th solution

Compute the $13^{\text {th }}$ solution

Direct Access the 13th solution

Compute the $13^{\text {th }}$ solution

Direct Access the 13th solution

Compute the $13^{\text {th }}$ solution

Direct Access the 13th solution

Compute the $13^{\text {th }}$ solution

Direct Access the 13th solution

Compute the $13^{\text {th }}$ solution $\rightarrow 221$

Solving DA for SCQ

$$
\operatorname{SCQ} Q\left(x_{1}, \ldots, x_{n}\right), \pi=\left(x_{1}, \ldots, x_{n}\right)
$$

Preprocessing:

1. Construct π-ordered circuit C of size $\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(Q, \pi)} \operatorname{poly}(Q)\right)$
2. Preprocess C in time $O(|C| \log |\mathbb{D}|)$.

Direct Access :

1. Directly on C
2. in time $O(n \log |D|)$!

Solving DA for SCQ

$$
\operatorname{SCQ} Q\left(x_{1}, \ldots, x_{n}\right), \pi=\left(x_{1}, \ldots, x_{n}\right)
$$

Preprocessing:

1. Construct π-ordered circuit C of size $\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(Q, \pi)} \operatorname{poly}(Q)\right)$
2. Preprocess C in time $O(|C| \log |\mathbb{D}|)$.

Direct Access :

1. Directly on C
2. in time $O(n \log |D|)$!
Q, n considered constant here!

Solving DA for SCQ

$$
\operatorname{SCQ} Q\left(x_{1}, \ldots, x_{n}\right), \pi=\left(x_{1}, \ldots, x_{n}\right)
$$

Preprocessing: $\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(Q, \pi)}\right)$

1. Construct π-ordered circuit C of size $\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(Q, \pi)} \operatorname{poly}(Q)\right)$
2. Preprocess C in time $O(|C| \log |\mathbb{D}|)$.

Direct Access :

1. Directly on C
2. in time $O(n \log |D|)$!
Q, n considered constant here!

Solving DA for SCQ

$$
\operatorname{SCQ} Q\left(x_{1}, \ldots, x_{n}\right), \pi=\left(x_{1}, \ldots, x_{n}\right)
$$

Preprocessing: $\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(Q, \pi)}\right)$

1. Construct π-ordered circuit C of size $\tilde{O}\left(|\mathbb{D}|^{1+\operatorname{show}(Q, \pi)} \operatorname{poly}(Q)\right)$
2. Preprocess C in time $O(|C| \log |\mathbb{D}|)$.

Direct Access : $O(\log |\mathbb{D}|)$

1. Directly on C
2. in time $O(n \log |D|)$!
Q, n considered constant here!

DPLL: building circuits

Compilation based on a variation of DPLL :

1. $Q(\mathbb{D})=\biguplus_{d \in D}\left[x_{1}=d\right] \times Q\left[x_{1}=d\right](\mathbb{D})$
2. $Q(\mathbb{D})=Q_{1}(\mathbb{D}) \times Q_{2}(\mathbb{D})$ if $Q=Q_{1} \wedge Q_{2}$ with $\operatorname{var}\left(Q_{1}\right) \cap \operatorname{var}\left(Q_{2}\right)=\emptyset$
3. Top down induction + caching

https://florent.capelli.me/cytoscape/dpll.html

Going further

Other usage of circuits

1. Extension to $\exists \mathrm{SJQ}$:

- Last variable in C can be existentially projected without increase in circuit size
- Give DA for $\exists x_{k}, \ldots, x_{n} Q\left(x_{1}, \ldots, x_{n}\right)$.

2. Semi-ring Aggregation

- $w: X \times D \rightarrow(\mathbb{K}, \oplus, \otimes)$
- Compute $\bigoplus_{\tau \in Q(\mathbb{D})} \otimes_{x \in X} w(x, \tau(x))$

Work in progress

1. Improve preprocessing
 $\tilde{O}\left(|\mathbb{D}|^{\text {show }(Q, \pi)+1}\right)$

Work in progress

1. Improve preprocessing
 $\tilde{O}\left(|\mathbb{D}|^{\text {show }(Q, \pi)}\right)$

Work in progress

1. Improve preprocessing
$\tilde{O}\left(|\mathbb{D}|^{\text {show }(Q, \pi)}\right)$
doable with a few tweaks in DPLL, joint work with S. Salvati.

Work in progress

1. Improve preprocessing
$\tilde{O}\left(|\mathbb{D}|^{\text {show }(Q, \pi)}\right)$
doable with a few tweaks in DPLL, joint work with S. Salvati.
2. Lower bounds: preprocessing in $|\mathbb{D}|^{\text {show }}(Q, \pi)$
unavoidable under Zero-clique conjecture (join work with N. Carmeli).

Work in progress

1. Improve preprocessing
$\tilde{O}\left(|\mathbb{D}|^{\text {show }(Q, \pi)}\right)$
doable with a few tweaks in DPLL, joint work with S. Salvati.
2. Lower bounds: preprocessing in $\left.|\mathbb{D}|^{\text {show }(~} Q, \pi\right)$
unavoidable under Zero-clique conjecture (join work with N. Carmeli).
3. Aggregation
$Q\left(x_{1}, \ldots, x_{k}, F\left(x_{k+1}, \ldots, x_{n}\right)\right)$, generalizing work by I. Eldar, N. Carmeli, B. Kimelfeld.

[^0]: In this work, all presented complexity in data complexity will also be polynomial for

