
NP-Preprocessing

Pierre Marquis

CRIL, U. Artois & CNRS,
Institut Universitaire de France

France

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 1/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 2/119

Knowledge Compilation vs. Preprocessing

Two preprocessing approaches for circumventing the complexity
of computationally hard tasks

I knowledge compilation
input: Σ (in L1) compilation Ψ (in L2)

input: α (in L1)

resolution output: result

I preprocessing
input: Σ, α (in L1) preprocessing Ψ (in L1) resolution output: result

I The two approaches can be combined

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 3/119

Knowledge Compilation vs. Preprocessing

Two preprocessing approaches for circumventing the complexity
of computationally hard tasks

I knowledge compilation
input: Σ (in L1) compilation Ψ (in L2)

input: α (in L1)

resolution output: result

I preprocessing
input: Σ, α (in L1) preprocessing Ψ (in L1) resolution output: result

I The two approaches can be combined

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 3/119

Knowledge Compilation vs. Preprocessing

Two preprocessing approaches for circumventing the complexity
of computationally hard tasks

I knowledge compilation
input: Σ (in L1) compilation Ψ (in L2)

input: α (in L1)

resolution output: result

I preprocessing
input: Σ, α (in L1) preprocessing Ψ (in L1) resolution output: result

I The two approaches can be combined

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 3/119

Knowledge Compilation vs. Preprocessing

I Main resemblances:
I making the resolution of the instance computationally easier

once the preprocessing step has been achieved
I no guarantee of success

I Main differences:
I ”hard” part vs. ”easy” part of the solving process
I handling of the variable part α of the input (does not exist in

general, can be preprocessed as well or not)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 4/119

Knowledge Compilation vs. Preprocessing

I Main resemblances:
I making the resolution of the instance computationally easier

once the preprocessing step has been achieved
I no guarantee of success

I Main differences:
I ”hard” part vs. ”easy” part of the solving process
I handling of the variable part α of the input (does not exist in

general, can be preprocessed as well or not)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 4/119

Computationally Hard Tasks = ?

I sat
I Input: a CNF formula Σ
I Output: 1 if Σ is satisfiable, 0 otherwise
I The canonical NP-complete problem!

I #sat
I Input: a CNF formula Σ (plus eventually a satisfiable term α)
I Output: the number of models of Σ (conditioned by α)
I The canonical #P-complete problem!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 5/119

Satisfiability

I Σ 7→ 1 if Σ has a model, 0 otherwise

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I Σ is satisfiable since (for instance) 011 is a model of Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 6/119

Satisfiability

I Σ 7→ 1 if Σ has a model, 0 otherwise

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I Σ is satisfiable since (for instance) 011 is a model of Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 6/119

Satisfiability

I Σ 7→ 1 if Σ has a model, 0 otherwise

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I Σ is satisfiable since (for instance) 011 is a model of Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 6/119

Model Counting

I Σ 7→ ‖Σ‖ = ?

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I The models of Σ over {x , y , z} are :

011
100
101
111

I ‖Σ‖ = 4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 7/119

Model Counting

I Σ 7→ ‖Σ‖ = ?

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I The models of Σ over {x , y , z} are :

011
100
101
111

I ‖Σ‖ = 4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 7/119

Model Counting

I Σ 7→ ‖Σ‖ = ?

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I The models of Σ over {x , y , z} are :

011
100
101
111

I ‖Σ‖ = 4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 7/119

Model Counting

I Σ 7→ ‖Σ‖ = ?

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I The models of Σ over {x , y , z} are :

011
100
101
111

I ‖Σ‖ = 4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 7/119

Model Counting

I Counting the models of a propositional formula is a key task
for a number of problems (especially in AI):

I probabilistic inference
I stochastic planning
I ...

I However #sat is a computationally hard task: #P-complete
I Even for subsets of formulae for which sat is easy

(e.g., monotone Krom formulae)!

I The ”power” of counting and its complexity are reflected by
Toda’s theorem:

Seinosuke Toda (Gödel Prize 1998):

PH ⊆ P#P

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 8/119

Model Counting

I Counting the models of a propositional formula is a key task
for a number of problems (especially in AI):

I probabilistic inference
I stochastic planning
I ...

I However #sat is a computationally hard task: #P-complete

I Even for subsets of formulae for which sat is easy
(e.g., monotone Krom formulae)!

I The ”power” of counting and its complexity are reflected by
Toda’s theorem:

Seinosuke Toda (Gödel Prize 1998):

PH ⊆ P#P

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 8/119

Model Counting

I Counting the models of a propositional formula is a key task
for a number of problems (especially in AI):

I probabilistic inference
I stochastic planning
I ...

I However #sat is a computationally hard task: #P-complete
I Even for subsets of formulae for which sat is easy

(e.g., monotone Krom formulae)!

I The ”power” of counting and its complexity are reflected by
Toda’s theorem:

Seinosuke Toda (Gödel Prize 1998):

PH ⊆ P#P

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 8/119

Model Counting

I Counting the models of a propositional formula is a key task
for a number of problems (especially in AI):

I probabilistic inference
I stochastic planning
I ...

I However #sat is a computationally hard task: #P-complete
I Even for subsets of formulae for which sat is easy

(e.g., monotone Krom formulae)!

I The ”power” of counting and its complexity are reflected by
Toda’s theorem:

Seinosuke Toda (Gödel Prize 1998):

PH ⊆ P#P

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 8/119

Model Counting

I Many model counters have been developed:
I Exact model counters:

I search-based: Cachet, SharpSAT, etc.,
I compilation-based: C2D, Dsharp, D4, etc.
I ...

I Approximate model counters (SampleCount, etc.)
I ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 9/119

Knowledge Compilation vs. Preprocessing
for Model Counting

I knowledge compilation
input: Σ (in CNF) compilation Ψ (in d-DNNF)

input: α (a consistent term)

model counting ‖Σ | α‖

I preprocessing
input: Σ, α (in CNF) p Ψ (in CNF) model counting ‖Σ | α‖

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 10/119

Knowledge Compilation vs. Preprocessing
for Model Counting

I knowledge compilation
input: Σ (in CNF) compilation Ψ (in d-DNNF)

input: α (a consistent term)

model counting ‖Σ | α‖

I preprocessing
input: Σ, α (in CNF) p Ψ (in CNF) model counting ‖Σ | α‖

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 10/119

P-Preprocessings

I Polynomial-time preprocessings
I Can prove useful for sat and #sat

I Related to the notion of kernelization: given a parameterized
problem (L ⊆ V ∗, κ : V ∗ → N), a kernelization for L is a
polynomial-time algorithm p that takes an instance Σ ⊆ V ∗

with parameter κ(Σ), and maps it to an instance p(Σ) ⊆ V ∗

such that Σ ∈ L if and only if p(Σ) ∈ L and the size of p(Σ)
is upper bounded by f (κ(Σ)) for some computable function f

I If L is decidable, then L is fixed-parameter tractable for
parameter κ(.) if and only if L has a kernelization

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 11/119

Dozens of P-Preprocessings

I Vivification (VI) and a light form of it, called Occurrence Elimination (OE),
I Gate Detection and Replacement (GDR)
I Pure Literal Elimination (PLE)
I Variable Elimination (VE)
I Blocked Clause Elimination (BCE)
I Covered Clause Elimination (CCE)
I Failed Literal Elimination (FLE)
I Self-Subsuming Resolution (SSR)
I Hidden Literal Elimination (HLE)
I Subsumption Elimination (SE)
I Hidden Subsumption Elimination (HSE)
I Asymmetric Subsumption Elimination (ASE)
I Tautology Elimination (TE)
I Hidden Tautology Elimination (HTE)
I Asymmetric Tautology Elimination (ATE)
I ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 12/119

Use in State-of-the-Art sat Solvers

I Glucose (exploits the SatELite preprocessor)
I Lingeling (has an internal preprocessor)
I Riss (use of the Coprocessor preprocessor)
I ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 13/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 14/119

The CNF Input Assumption

sat solvers and model counters typically considers CNF inputs
I The CNF assumption is not restrictive
I Every circuit Ψ can be turned into a CNF formula Σ in linear

time

I The translation requires the introduction of new variables
Y = {y1, . . . , } and preserves

I the queries over the alphabet of the input circuit
(Plaisted/Greenbaum)

Ψ ≡ ∃Y .Σ

I and the number of models of the input (Tseitin)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 15/119

Translation into CNF: Tseitin

Ψ = (x1 ∧ x̄2) ∨ (x2 ∧ x3)
T (Ψ) ≡ (y1 ∨ y2) ∧ (y1 ⇔ (x1 ∧ x̄2)) ∧ (y2 ⇔ (x2 ∧ x3))

T (Ψ) =
y1 ∨ y2

ȳ1 ∨ x1

ȳ1 ∨ x̄2

y1 ∨ x̄1 ∨ x2

ȳ2 ∨ x2

ȳ2 ∨ x3

y2 ∨ x̄2 ∨ x̄3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 16/119

Translation into CNF: Plaisted/Greenbaum

Ψ = (x1 ∧ x̄2) ∨ (x2 ∧ x3)
PG (Ψ) ≡ (y1 ∨ y2) ∧ (y1 ⇒ (x1 ∧ x̄2)) ∧ (y2 ⇒ (x2 ∧ x3))

PG (Ψ) =
y1 ∨ y2

ȳ1 ∨ x1

ȳ1 ∨ x̄2

ȳ2 ∨ x2

ȳ2 ∨ x3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 17/119

Reducing What?

CNF Σ 7→ CNF p(Σ)

I What are the connections between Σ and p(Σ)?

I Removing clauses from Σ

I Removing literals in the clauses of Σ

I Updating Σ in another way
I ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 18/119

Looking for IES or Minimal CNF is often too Expensive

I A clause δ of a CNF Σ is redundant if and only if Σ \ {δ} |= δ

I A CNF Σ is irredundant if and only if it does not contain any
redundant clause

I A subset Σ′ of a CNF Σ is an irredundant equivalent subset
(IES) of Σ if and only if Σ′ is irredundant and Σ′ ≡ Σ

I Deciding whether a CNF Σ is irredundant is NP-complete
I Deciding whether a CNF Σ′ is an irredundant equivalent

subset (IES) of a CNF Σ is Dp-complete
I Given an integer k , deciding whether a CNF Σ has an IES of

size at most k is Σp
2-complete

I Given an integer k , deciding whether there exists a CNF

formula Σ′ with at most k literals (or with at most k clauses)
equivalent to a given CNF Σ is Σp

2-complete

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 19/119

Redundancy can be Useful!

Redundancy can be helpful (favoring the unit propagation power
by adding empowering clauses)

I x3 ∨ x4 is a logical consequence of
Σ =

x1 ∨ x2 ∨ x3

x̄1 ∨ x2 ∨ x4

x1 ∨ x̄2 ∨ x3

x̄1 ∨ x̄2 ∨ x4

I Assuming x̄3 ∧ x̄4, there is no unit refutation from Σ

I If x3 ∨ x4 (or x2 ∨ x3 ∨ x4 or x̄2 ∨ x3 ∨ x4) is added to Σ, a unit
refutation from Σ under the assumption x̄3 ∧ x̄4 exists

I Learning clauses is a key ingredient for efficient sat solvers
based on the CDCL architecture!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 20/119

Preserving What?

I Logical equivalence
I Number of models
I Satisfiability
I ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 21/119

Levels of Preservation

A→ B : if a preprocessing p preserves A, then p preserves B

Logical equivalence

Number of models

Satisfiability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 22/119

Properties of Preprocessings

I Level of preservation (logical equivalence, number of models,
satisfiability)

I Confluence: is p(Σ) sensitive w.r.t. the way clauses and
literals in them are listed in Σ?

I Projectiveness: do we have p(p(Σ)) = p(Σ)?
(important to decide whether iterating p makes sense or not)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 23/119

Measuring the Impact of a Preprocessing

Several measures for the reduction achieved can be considered:
I The number of variables in the input CNF Σ

I The size of Σ (the number of literals or the number of clauses
in it)

I The treewidth of the primal graph of Σ

I The value of other structural parameters for Σ

I ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 24/119

Example: Subsumption Elimination

A clause δ1 subsumes a clause δ2

if every literal of δ1 is a literal of δ2

SE : (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x̄3) 7→ x1 ∨ x2

I Preserves logical equivalence
I Hence preserves the number of models of the input (over the

original alphabet), and its satisfiability
I Is confluent and projective

I #var(Σ) ≥ #var(SE(Σ))

I #lit(Σ) ≥ #lit(SE(Σ))

I tw(Σ) ≥ tw(SE(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 25/119

Example: Pure Literal Elimination

A literal l is pure in Σ if every occurrence of the corresponding
variable has the same polarity

PLE : (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3) 7→ x̄2 ∨ x̄3

I Preserves the satisfiability of the input
I Does not preserve its number of models or logical

equivalence
I Is confluent and projective

I #var(Σ) ≥ #var(PLE(Σ))

I #lit(Σ) ≥ #lit(PLE(Σ))

I tw(Σ) ≥ tw(PLE(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 26/119

Estimating the Amount of Reduction Achieved

I For each p, the impact of p is evaluated empirically (and quantitatively)
on 182 CNF instances from the SAT LIBrary, gathered into 9 data sets, as
follows:

I Bayesian networks (60)
I BMC (11) (Bounded Model Checking)
I Circuit (28)
I Configuration (12)
I Handmade (28)
I Planning (17)
I Random (13)
I Scheduling (6)
I Qif (7) (Quantitative Information Flow analysis - security)

I Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB RAM
on Linux CentOS

I Time-out =1h
I Memory-out = 7.6 GiB

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 27/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings
Occurrence Reduction (OR)
Vivification (VI)
Gate Detection and Replacement (GDR)

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 28/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings
Occurrence Reduction (OR)
Vivification (VI)
Gate Detection and Replacement (GDR)

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 29/119

Occurrence Reduction (OR)

I Occurrence reduction aims to remove some literals in the
clauses of Σ

I In order to determine whether a literal `j+1 can be removed
from a clause α of Σ, the approach consists in determining
whether the clause which coincides with α except that `j+1

has been replaced by ∼`j+1 is a logical consequence of Σ

I This is done by determining whether
Σ ∧ `j+1 ∧ ∼`1 ∧ . . . ∧ ∼`j is contradictory

I When this is the case, `j+1 can be removed from α without
questioning logical equivalence

I bcp is used as an incomplete yet efficient method to solve
the entailment problem

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 30/119

Occurrence Reduction (OR)

Algorithm 1: OR Occurrence reduction
input : a CNF formula Σ
output: a CNF formula equivalent to Σ
L← sort(Lit(Σ));1
foreach ` ∈ L do2

foreach α ∈ Σ s.t. ` ∈ α do3
if ∅ ∈ bcp(Σ ∪ {`} ∪ {∼(α \ {`})}) then4
Σ←(Σ \ {α}) ∪ {α \ {`}};

return Σ5

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 31/119

Occurrence Reduction (OR): Example

Σ =
a ∨ f a ∨ b ∨ c
b ∨ d ∨ e c ∨ ¬d ∨ e
b ∨ d ∨ ¬e c ∨ ¬d ∨ ¬e

L = (b, c , e,¬e, d ,¬d , a, f , ¬a, ¬b, ¬c)

OR(Σ) =
a ∨ f b ∨ c
b ∨ d c ∨ ¬d
b ∨ d c ∨ ¬d

a ∨ b ∨ c is reduced to b ∨ c and every occurrence of e has been
removed

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 32/119

Properties of OR

I Preserves logical equivalence
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(OR(Σ))

I #lit(Σ) ≥ #lit(OR(Σ))

I tw(Σ) ≥ tw(OR(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 33/119

OR: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

o
c
c
u
r
r
e
n
c
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(OR(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 34/119

OR: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

o
c
c
u
r
r
e
n
c
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(OR(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 35/119

OR: Reduction of the Treewidth

1

10

100

10 100

o
c
c
u
r
r
e
n
c
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(OR(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 36/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings
Occurrence Reduction (OR)
Vivification (VI)
Gate Detection and Replacement (GDR)

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 37/119

Vivification (VI)

I Vivification aims to reduce Σ, i.e., to remove some clauses
and some literals in Σ while preserving equivalence

I Given a clause α = `1 ∨ . . . ∨ `k of Σ two rules are used in
order to determine whether α can be removed from Σ or
simply shortened

I Let α′ be any subclause of α
I On the one hand, if for any j ∈ 0, . . . , k − 1, one can prove

using bcp that Σ \ {α} |= α′, then for sure α is entailed by
Σ \ {α} so that α can be removed from Σ

I On the other hand, if one can prove using bcp that
Σ \ {α} |= α′ ∨ ∼`j+1, then `j+1 can be removed from α
without questioning equivalence

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 38/119

Vivification (VI)

Algorithm 2: VI

input : a CNF formula Σ
output: a CNF formula equivalent to Σ
foreach α ∈ Σ do1

Σ←Σ \ {α};2
α′←⊥;3
I←bcp(Σ);4
while ∃` ∈ α s.t. ∼` /∈ I and α′ 6= > do5

α′←α′ ∨ `;6
I←bcp(Σ ∪ {∼α′});7
if ∅ ∈ I then α′←>;8

Σ←Σ ∪ {α′};9

return Σ10

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 39/119

Vivification (VI): Example

Σ =
a ∨ b ∨ c ∨ d
a ∨ b ∨ c
a ∨ ¬d

Assume that the variables are processed w.r.t. the ordering
d < c < b < a

VI(Σ) =
a ∨ b ∨ c
a ∨ ¬d

The effect of VI on Σ is to eliminate the first clause a ∨ b ∨ c ∨ d

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 40/119

Properties of VI

I Preserves logical equivalence
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(VI(Σ))

I #lit(Σ) ≥ #lit(VI(Σ))

I tw(Σ) ≥ tw(VI(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 41/119

VI: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

v
i
v
i
f
i
c
a
t
i
o
n
S
i
m
p

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(VI(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 42/119

VI: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

v
i
v
i
f
i
c
a
t
i
o
n
S
i
m
p

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(VI(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 43/119

VI: Reduction of the Treewidth

1

10

100

10 100

v
i
v
i
f
i
c
a
t
i
o
n
S
i
m
p

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(VI(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 44/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings
Occurrence Reduction (OR)
Vivification (VI)
Gate Detection and Replacement (GDR)

Literal Equivalence (LE)
AND/OR Gate Equivalence (AG)
XOR Gate Equivalence (XG)

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to DefinabilityResearch School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 45/119

Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 46/119

Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 46/119

Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection

(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 46/119

Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement

(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 46/119

Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 46/119

Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 46/119

Gate Detection and Replacement

I Gate detection and replacement proves to be a valuable
preprocessing

I Only specific gates are sought for (literal equivalence,
AND/OR gates, XOR gates)

I The replacement Σ[`← β] requires to turn the resulting
formula into CNF

I It is implemented only if it it does not lead to increase the
size of the input (a ”small” increase can also be accepted)

I bcp (instead of a ”full” sat solver) is used for efficiency
reasons

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 47/119

Literal Equivalence (LE)

I Literal equivalence aims to detect equivalences between
literals using bcp

I For each literal `, all the literals `′ which can be found
equivalent to ` using bcp are replaced by ` in Σ

I Taking advantage of bcp makes it more efficient than a
”syntactic detection” (if two binary clauses stating an
equivalence between two literals ` and `′ occur in Σ, then
those literals are found equivalent using bcp, but the
converse does not hold)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 48/119

Literal Equivalence (LE)

Algorithm 3: LE

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ; Unmark all variables of Φ;1
while ∃` ∈ Lit(Φ) s.t. var(`) is not marked do2

// detection

mark var(`);3
P`←bcp(Φ ∪ {`});4
N`←bcp(Φ ∪ {∼`});5
Γ←{`↔ `′|`′ 6= ` and `′ ∈ P` and ∼`′ ∈ N`};6

// replacement

foreach `↔ `′ ∈ Γ do7
replace ` by `′ in Φ;8

return Φ9

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 49/119

Literal Equivalence (LE): Example

Σ =
a ∨ b ∨ c ∨ ¬d ¬a ∨ ¬b ∨ ¬c ∨ d
a ∨ b ∨ ¬c ¬a ∨ ¬b ∨ c
¬a ∨ b a ∨ ¬b
¬e ∨ ¬f ∨ h e ∨ f ∨ g
e ∨ ¬g ¬e ∨ ¬h

Assume that the variables of Σ are considered in the following
ordering: a < b < c < d < e < f < g < h

The equivalences (a⇔ b) ∧ (b ⇔ c) ∧(c ⇔ d) ∧ (e ⇔ ¬f) are
detected

LE(Σ) =
¬f ∨ ¬g f ∨ ¬h

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 50/119

Properties of LE

I Preserves the number of models (but not logical equivalence)
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(LE(Σ))

I #lit(Σ) ≥ #lit(LE(Σ))

I tw(Σ) 6≥ tw(LE(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 51/119

LE: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

e
q
u
i
v
S
i
m
p
l

(Σ
)

Figure: Comparing #var(Σ) with #var(LE(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 52/119

LE: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

e
q
u
i
v
S
i
m
p
l

(Σ
)

Figure: Comparing #lit(Σ) with #lit(LE(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 53/119

LE: Reduction of the Treewidth

1

10

100

10 100

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

e
q
u
i
v
S
i
m
p
l

(Σ
)

Figure: Comparing tw(Σ) with tw(LE(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 54/119

AND/OR Gate Equivalence (AG)

I AND/OR gate equivalence aims to detect equivalences
`i ⇔ βi where βi is a conjunction or a disjunction of literals

I bcp is used in this objective
I Unlike previous approaches based on pattern matching (i.e.,

when one looks for clauses encoding an AND gate or an OR
gate), using bcp makes it more efficient (if clauses stating
the presence of an AND/OR gate occur in Σ, then AG will
find the gate – or a ”subsuming” one – but the converse is
not true)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 55/119

AND/OR Gate Equivalence (AG)

Algorithm 4: AG
input : a CNF formula Σ
output : a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection

Γ←∅; Unmark all literals of Φ;2
while ∃` ∈ Lit(Φ) s.t. ` is not marked do3

mark `;4
P`←(bcp(Φ ∪ {`}) \ (bcp(Φ) ∪ {`})) ∪ {∼`};5
if ∅ ∈ bcp(Φ ∪ P`) then6

let C` ⊆ P` s.t. ∅ ∈ bcp(Φ ∪ C`) and ∼` ∈ C` ;7
Γ←Γ ∪ {`↔

∧
`′∈C`\{∼`} `

′};8

// replacement

while ∃`↔ β ∈ Γ st. |β|<maxA and |Φ[`←β]| ≤ |Φ| do9
Φ←Φ[`←β];10
Γ←Γ[`←β];11

return Φ12

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 56/119

AND/OR Gate Equivalence (AG): Example

Σ =
a ∨ b ∨ c ∨ d ¬a ∨ ¬b
¬a ∨ b ∨ ¬c ¬a ∨ b ∨ c ∨ ¬d
¬a ∨ e a ∨ f

Assume that the literals are processed w.r.t. the literal ordering:
a < ¬a < b < ¬b < c < ¬c < d < ¬d < e < ¬e < f < ¬f

The gate a⇔ (¬b ∧ ¬c ∧ ¬d) is detected and a is replaced by its
definition

AG(Σ) =
b ∨ c ∨ d ∨ e ¬b ∨ f
¬c ∨ f ¬d ∨ f

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 57/119

Properties of AG

I Preserves the number of models (but not logical equivalence)
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(AG(Σ))

I #lit(Σ) ≥ #lit(AG(Σ))

I tw(Σ) 6≥ tw(AG(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 58/119

AG: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

A
N
D
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(AG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 59/119

AG: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

A
N
D
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(AG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 60/119

AG: Reduction of the Treewidth

1

10

100

1000

10000

100000

100 1000 10000 100000

A
N
D
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing tw(Σ) with tw(AG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 61/119

XOR Gate Equivalence (XG)

I XOR gate detection and replacement aims to detect
equivalences `i ⇔ χi where χi is a XOR disjunction of
literals

I The detection is ”syntactic” (XOR disjunctions of literals
containing a limited number of literals are targeted)

I The resulting set of gates, which can be viewed as a set of
XOR clauses since `i ↔ χi is equivalent to ∼`i ⊕ χi , is
turned into reduced row echelon form using Gauss algorithm

I Every `i is replaced by its definition χi in Σ, provided that
the normalization it involves does not generate ”large”
clauses

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 62/119

XOR Gate Equivalence (XG)

Algorithm 5: XG

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection

Γ←{XOR clauses syntactically detected};2

// Gaussian elimination

Γ←Gauss({`1 ↔ χ1, `2 ↔ χ2, . . . , `k ↔ χk})3

// replacement

for i←1 to k do4
if @α ∈ Φ[`i←χi] s.t. |α| > maxX then Φ←Φ[`i←χi];5

return Φ6

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 63/119

XOR Gate Equivalence (XG): Example

Σ =
b ∨ d ¬b ∨ ¬d
¬a ∨ ¬b ∨ c a ∨ ¬b ∨ ¬c
¬a ∨ b ∨ ¬c a ∨ b ∨ c
b ∨ e a ∨ f

Suppose that the two XOR gates b ⊕ d and a⊕ b ⊕ c are
detected successively

XG(Σ) =
¬d ∨ e c ∨ d ∨ f
¬c ∨ ¬d ∨ f

The first six clauses which participate in the XOR gates are made
valid through the replacement, the clause b ∨ e is replaced by
¬d ∨ e , and the clause a ∨ f is replaced by the two clauses
c ∨ d ∨ f and ¬c ∨ ¬d ∨ f

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 64/119

Properties of XG

I Preserves the number of models (but not logical equivalence)
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(XG(Σ))

I #lit(Σ) ≥ #lit(XG(Σ))

I tw(Σ) 6≥ tw(XG(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 65/119

XG: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

X
O
R
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(XG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 66/119

XG: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

X
O
R
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(XG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 67/119

XG: Reduction of the Treewidth

1

10

100

10 100

X
O
R
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(XG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 68/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings
Backbone Identification (BI)

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 69/119

NP-Preprocessings

I Taking advantage of sat solvers for simplifying the input CNF
during a preprocessing step

I An option that makes sense when tackling problems which
are seemingly located ”above NP” (like #sat)

I Backbone identification
I Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 70/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings
Backbone Identification (BI)

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 71/119

Backbone Identification (BI)

I The backbone of a CNF formula Σ is the set of all literals
which are implied by Σ when Σ is satisfiable, and is the
empty set otherwise

I The purpose of the BI preprocessing is to make the backbone
B of the input CNF formula Σ explicit, to conjoin it to Σ, and
to use bcp (Boolean Constraint Propagation) on the
resulting set of clauses

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 72/119

Backbone Identification (BI)

Algorithm 6: BI Backbone Identification
input : a CNF formula Σ
output: the CNF bcp(Σ ∪ B), where B is the backbone of Σ
B←∅;1
I←solve(Σ);2
while ∃` ∈ I s.t. ` /∈ B do3
I ′←solve(Σ ∪ {∼`});4
if I ′ = ∅ then B←B ∪ {`}else I←I ∩ I ′;5

return bcp(Σ ∪ B)6

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 73/119

Backbone Identification (BI): Example

Σ =
a ∨ b
¬a ∨ b
¬b ∨ c
c ∨ d
¬c ∨ e ∨ f
f ∨ ¬g

The backbone of Σ is equal to B = {b, c}

BI(Σ) =
b
c
e ∨ f
f ∨ ¬g

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 74/119

Properties of BI

I Preserves logical equivalence
I Is confluent and projective

I #var(Σ) ≥ #var(BI(Σ))

I #lit(Σ) ≥ #lit(BI(Σ))

I tw(Σ) ≥ tw(BI(Σ))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 75/119

BI: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

b
a
c
k
b
o
n
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(BI(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 76/119

BI: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

b
a
c
k
b
o
n
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(BI(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 77/119

BI: Reduction of the Treewidth

1

10

100

10 100

b
a
c
k
b
o
n
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(BI(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 78/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 79/119

Putting the Elementary Preprocessings Together

The pmc preprocessor
I Iteration makes sense
I The combination to be chosen depends on what is expected

to be preserved
I eq corresponds to the parameter assignment of pmc where

optV = optB = optO = 1 and optG = 0. It is
equivalence-preserving.

I #eq corresponds to the parameter assignment of pmc where
optV = optB = optO = 1 and optG = 1. This combination is
guaranteed only to preserve the number of models of the
input.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 80/119

The pmc Preprocessor

Algorithm 7: pmc

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
if optB then Φ←BI(Φ);2
i←0;3
while i < numTries do4

i←i + 1;5
if optO then Φ← OR(Φ);6
if optG then Φ←XG(AG(LE(Φ)));7
if optV then Φ←VI(Φ);8
if fixpoint then break ;9

return Φ10

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 81/119

eq: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(eq(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 82/119

eq: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(eq(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 83/119

eq: Reduction of the Treewidth

1

10

100

10 100

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(eq(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 84/119

#eq: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

#
E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(#eq(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 85/119

#eq: Reduction of the Size

1

10

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

#
E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #lit(Σ) with #lit(#eq(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 86/119

#eq: Reduction of the Treewidth

1

10

100

10 100

#
E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(#eq(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 87/119

Improving Model Counting?

I Reducing #var(Σ), #lit(Σ), and tw(Σ) is a priori valuable
for improving the model counting task (computationally
speaking)

I But it could be the case that the preprocessings used are too
much time-demanding and that they do not really lead to
easier instances but concentrate their difficulty instead...

I Some large-scale experiments are needed to determine
whether some improvements are actually achieved

I Cachet, SharpSAT, C2D, and Dsharp are used downstream
I C2D and Dsharp are used as compilers (since the objective is

to preserve the information given in the input, only eq is
considered as an admissible preprocessing combination)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 88/119

Empirical Setting

I 1449 CNF instances from the SAT LIBrary
I 9 data sets: BMC (18), Circuit (68), Qif (7), Planning (34),

Random (105), Scheduling (6), Handmade (58), Configuration
(35), Bayesian networks (1118)

I Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32
GiB RAM on Linux CentOS

I Time-out =1h
I Memory-out = 7.6 GiB

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 89/119

Efficiency of eq

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

ti
m
e
(s
)

#instances

Eq(Σ)
Si

m
pl

ifi
ca

tio
n

tim
e

(in
se

co
nd

s)

Number of instances

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 90/119

Efficiency of #eq

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

ti
m
e
(s
)

#instances

#Eq(Σ)
Si

m
pl

ifi
ca

tio
n

tim
e

(in
se

co
nd

s)

Number of instances

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 91/119

Impact of eq on Cachet

1

10

100

1000

1 10 100 1000

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparison of the computation times needed to count the
number of models of an instance using Cachet, when no preprocessing
is used vs. when the eq combination has been applied first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 92/119

Impact of #eq on Cachet

1

10

100

1000

1 10 100 1000

#
E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparison of the computation times needed to count the
number of models of an instance using Cachet, when no preprocessing
is used vs. when the #eq combination has been applied first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 93/119

Impact of eq on SharpSAT

1

10

100

1000

1 10 100 1000

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparison of the computation times needed to count the
number of models of an instance using SharpSAT, when no preprocessing
is used vs. when the eq combination has been applied first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 94/119

Impact of #eq on SharpSAT

1

10

100

1000

1 10 100 1000

#
E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparison of the computation times needed to count the
number of models of an instance using SharpSAT, when no preprocessing
is used vs. when the #eq combination has been applied first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 95/119

Impact of eq on C2D (compilation times)

1

10

100

1000

1 10 100 1000

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparisons of the compilation times of C2D, when no
preprocessing is used vs. when the eq combination has been applied
first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 96/119

Impact of eq on C2D (sizes of the compiled forms)

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Figure: Comparisons of the sizes of the compiled forms obtained using
C2D, when no preprocessing is used vs. when the eq combination has
been applied first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 97/119

Impact of eq on Dsharp (compilation times)

1

10

100

1000

1 10 100 1000

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparisons of the compilation times of Dsharp, when no
preprocessing is used vs. when the eq combination has been applied
first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 98/119

Impact of eq on Dsharp (sizes of the compiled forms)

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Figure: Comparisons of the sizes of the compiled forms obtained using
Dsharp, when no preprocessing is used vs. when the eq combination has
been applied first.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 99/119

Empirical Results

I Empirically, each of eq and #eq proves to be a useful
preprocessing combination (whatever the downstream model
counter)

I The gate-detection-and-replacement preprocessings appear
as particularly interesting for improving search-based model
counters

I However this family of preprocessings is restricted to a small
subset of target gates

I Is it possible to do better, and to enlarge this family?

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 100/119

Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 101/119

Limitations of the Gate Detection and Replacement
Preprocessings

I The replacement phase requires gates to be detected
I The search space for gates is huge
I The size of a gate can be huge as well

I Identifying ”complex gates” is incompatible with the
efficiency expected for a preprocessing:
only ”simple” gates are targeted
literal equivalences y ↔ x1

AND/OR gates y ↔ (x1 ∧ x2 ∧ x3)
XOR gates y ↔ (x1 ⊕ x2)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 102/119

Limitations of the Gate Detection and Replacement
Preprocessings

I The replacement phase requires gates to be detected
I The search space for gates is huge
I The size of a gate can be huge as well

I Identifying ”complex gates” is incompatible with the
efficiency expected for a preprocessing:
only ”simple” gates are targeted
literal equivalences y ↔ x1

AND/OR gates y ↔ (x1 ∧ x2 ∧ x3)
XOR gates y ↔ (x1 ⊕ x2)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 102/119

Overcoming the Limitations (1)

I The (explicit) detection phase can be replaced by an implicit
detection phase

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Let us ask Evert and Alessandro for some help ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 103/119

Overcoming the Limitations (1)

I The (explicit) detection phase can be replaced by an implicit
detection phase

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Let us ask Evert and Alessandro for some help ...

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 103/119

Evert Willem Beth (1908-1964)

I Σ explicitly defines y in terms of
X = {x1, . . . , xn} iff there exists a
formula f (x1, . . . , xn) over X such that

Σ |= y ↔ f (x1, . . . , xn)

I Σ implicitly defines y in terms of
X = {x1, . . . , xn} iff for every
canonical term γX over X , we have
Σ ∧ γX |= y or Σ ∧ γX |= y

I Beth’s theorem: Σ explicitly defines y
in terms of X iff Σ implicitly defines
y in terms of X

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 104/119

Evert Willem Beth (1908-1964)

I Σ explicitly defines y in terms of
X = {x1, . . . , xn} iff there exists a
formula f (x1, . . . , xn) over X such that

Σ |= y ↔ f (x1, . . . , xn)

I Σ implicitly defines y in terms of
X = {x1, . . . , xn} iff for every
canonical term γX over X , we have
Σ ∧ γX |= y or Σ ∧ γX |= y

I Beth’s theorem: Σ explicitly defines y
in terms of X iff Σ implicitly defines
y in terms of X

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 104/119

Evert Willem Beth (1908-1964)

I Σ explicitly defines y in terms of
X = {x1, . . . , xn} iff there exists a
formula f (x1, . . . , xn) over X such that

Σ |= y ↔ f (x1, . . . , xn)

I Σ implicitly defines y in terms of
X = {x1, . . . , xn} iff for every
canonical term γX over X , we have
Σ ∧ γX |= y or Σ ∧ γX |= y

I Beth’s theorem: Σ explicitly defines y
in terms of X iff Σ implicitly defines
y in terms of X

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 104/119

Evert Willem Beth (1908-1964)

I Σ explicitly defines y in terms of
X = {x1, . . . , xn} iff there exists a
formula f (x1, . . . , xn) over X such that

Σ |= y ↔ f (x1, . . . , xn)

I Σ implicitly defines y in terms of
X = {x1, . . . , xn} iff for every
canonical term γX over X , we have
Σ ∧ γX |= y or Σ ∧ γX |= y

I Beth’s theorem: Σ explicitly defines y
in terms of X iff Σ implicitly defines
y in terms of X

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 104/119

Alessandro Padoa (1868-1937)

Padoa’s theorem:

Let Σ′X be equal to Σ where each variable
but those of X have been renamed in a
uniform way
If y 6∈ X , then Σ (implicitly) defines y in
terms of X iff Σ ∧ Σ′X ∧ y ∧ y ′ is
inconsistent

Deciding whether Σ (implicitly) defines y
in terms of X is ”only” coNP-complete

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 105/119

Alessandro Padoa (1868-1937)

Padoa’s theorem:

Let Σ′X be equal to Σ where each variable
but those of X have been renamed in a
uniform way
If y 6∈ X , then Σ (implicitly) defines y in
terms of X iff Σ ∧ Σ′X ∧ y ∧ y ′ is
inconsistent

Deciding whether Σ (implicitly) defines y
in terms of X is ”only” coNP-complete

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 105/119

Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a sat solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 106/119

Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability

I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a sat solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 106/119

Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)

I One call to a sat solver is enough to decide whether Σ
defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 106/119

Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a sat solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 106/119

Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a sat solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 106/119

Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a sat solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 106/119

The B+ E Preprocessor

A two-step preprocessing
I ”Detection = Bipartition”:

compute a definability bipartition 〈I ,O〉 of Σ such that
I ∪ O = Var(Σ), I ∩ O = ∅, and Σ defines every variable
o ∈ O in terms of I

I ”Replacement = Elimination”:
compute ∃E .Σ for E ⊆ O

I Steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 107/119

The B+ E Preprocessor

A two-step preprocessing
I ”Detection = Bipartition”:

compute a definability bipartition 〈I ,O〉 of Σ such that
I ∪ O = Var(Σ), I ∩ O = ∅, and Σ defines every variable
o ∈ O in terms of I

I ”Replacement = Elimination”:
compute ∃E .Σ for E ⊆ O

I Steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 107/119

The B+ E Preprocessor

A two-step preprocessing
I ”Detection = Bipartition”:

compute a definability bipartition 〈I ,O〉 of Σ such that
I ∪ O = Var(Σ), I ∩ O = ∅, and Σ defines every variable
o ∈ O in terms of I

I ”Replacement = Elimination”:
compute ∃E .Σ for E ⊆ O

I Steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 107/119

Back to GDR

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ defines u in terms of {x , y , z}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 108/119

Detecting u as an Output Variable and Eliminating it

Identification:
Σ ∧ Σ′{x ,y ,z} ∧ u ∧ u′ is inconsistent

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u
x ∨ u′ ∨ v ′

x ∨ y ∨ u′

x ∨ z ∨ u′

x ∨ u′

y ∨ z ∨ u′

u
u′

Elimination:
computing resolvents over u

x ∨ v ∨ x valid
x ∨ v ∨ y ∨ z
x ∨ y ∨ x valid
x ∨ y ∨ y ∨ z valid
x ∨ z ∨ x valid
x ∨ z ∨ y ∨ z valid

‖Σ‖ = ‖x ∨ v ∨ y ∨ z‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 109/119

Detecting u as an Output Variable and Eliminating it

Identification:
Σ ∧ Σ′{x ,y ,z} ∧ u ∧ u′ is inconsistent

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u
x ∨ u′ ∨ v ′

x ∨ y ∨ u′

x ∨ z ∨ u′

x ∨ u′

y ∨ z ∨ u′

u
u′

Elimination:
computing resolvents over u

x ∨ v ∨ x valid
x ∨ v ∨ y ∨ z
x ∨ y ∨ x valid
x ∨ y ∨ y ∨ z valid
x ∨ z ∨ x valid
x ∨ z ∨ y ∨ z valid

‖Σ‖ = ‖x ∨ v ∨ y ∨ z‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 109/119

Detecting u as an Output Variable and Eliminating it

Identification:
Σ ∧ Σ′{x ,y ,z} ∧ u ∧ u′ is inconsistent

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u
x ∨ u′ ∨ v ′

x ∨ y ∨ u′

x ∨ z ∨ u′

x ∨ u′

y ∨ z ∨ u′

u
u′

Elimination:
computing resolvents over u

x ∨ v ∨ x valid
x ∨ v ∨ y ∨ z
x ∨ y ∨ x valid
x ∨ y ∨ y ∨ z valid
x ∨ z ∨ x valid
x ∨ z ∨ y ∨ z valid

‖Σ‖ = ‖x ∨ v ∨ y ∨ z‖ = 15

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 109/119

Tuning the Computational Effort

Both steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint

I It is not necessary to determine a definability bipartition 〈I ,O〉
with |I | minimal
⇒ B is a greedy algorithm (one definability test per variable)
⇒ Only the minimality of I for ⊆ is guaranteed

I It is not necessary to eliminate in Σ every variable of O but
focusing on a subset E ⊆ O is enough
⇒ Eliminating every output variable could lead to an exponential
blow up
⇒ The elimination of y ∈ O is committed only if |Σ| after the
elimination step and some additional preprocessing (occurrence
simplification and vivification) remains small enough

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 110/119

Tuning the Computational Effort

Both steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint

I It is not necessary to determine a definability bipartition 〈I ,O〉
with |I | minimal
⇒ B is a greedy algorithm (one definability test per variable)
⇒ Only the minimality of I for ⊆ is guaranteed

I It is not necessary to eliminate in Σ every variable of O but
focusing on a subset E ⊆ O is enough
⇒ Eliminating every output variable could lead to an exponential
blow up
⇒ The elimination of y ∈ O is committed only if |Σ| after the
elimination step and some additional preprocessing (occurrence
simplification and vivification) remains small enough

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 110/119

Experiments

Objectives:
I Evaluating the computational benefits offered by B + E when

used upstream to state-of-the-art model counters:
I the search-based model counter Cachet
I the search-based model counter SharpSAT
I the compilation-based model counter C2D

I Comparing the benefits offered by B + E with those offered by
our previous preprocessor pmc (based on gate identification
and replacement) or with no preprocessing

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 111/119

Experiments

Objectives:
I Evaluating the computational benefits offered by B + E when

used upstream to state-of-the-art model counters:
I the search-based model counter Cachet
I the search-based model counter SharpSAT
I the compilation-based model counter C2D

I Comparing the benefits offered by B + E with those offered by
our previous preprocessor pmc (based on gate identification
and replacement) or with no preprocessing

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 111/119

Empirical Results

1

10

100

1000

200 250 300 350 400 450 500 550 600

ti
m

e
(i

n
se

co
n

d
s)

number of instances solved

SharpSAT(Σ)
SharpSAT(pmc(Σ))

SharpSAT(B+E(Σ, ∞))
Cachet(Σ)

Cachet(pmc(Σ))
Cachet(B+E(Σ, ∞))

c2d(Σ)
c2d(pmc(Σ))

c2d(B+E(Σ, ∞))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 112/119

Empirical Results

B + E vs. no preprocessing

0.1

1

10

100

1000

0.1 1 10 100 1000

C
a

ch
et

(B
+

E
(Σ

,
∞

))

Cachet(Σ)

Qif
Scheduling
Handmade

Planning
Circuit

Configuration
Random

BMC
BN

(a) B+ E+Cachet vs. Cachet

0.1

1

10

100

1000

0.1 1 10 100 1000

c2
d

(B
+

E
(Σ

,
∞

))

c2d(Σ)

Qif
Handmade

Planning
Circuit

Configuration
Random

BMC
BN

(b) B+ E+C2D vs. C2D

Figure: Model counting time reductions achieved by B + E vs. no
preprocessing

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 113/119

Empirical Results

B + E vs. pmc

0.1

1

10

100

1000

0.1 1 10 100 1000

C
a

ch
et

(B
+

E
(Σ

,
∞

))

Cachet(pmc(Σ))

Qif
Handmade

Planning
Circuit

Configuration
Random

BMC
BN

(a) B+ E+Cachet vs. pmc+Cachet

0.1

1

10

100

1000

0.1 1 10 100 1000

c2
d

(B
+

E
(Σ

,
∞

))

c2d(pmc(Σ))

Qif
Handmade

Planning
Circuit

Configuration
Random

BMC
BN

(b) B+ E+C2D vs. pmc+C2D

Figure: Model counting time reductions achieved by B + E vs. pmc

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 114/119

Empirical Results

I The experiments clearly show the benefits offered by B + E

I B + E appears typically as a better preprocessor than pmc

since it leads typically to improved performances (smaller
computation times)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 115/119

References (for further reading)

G. Audemard, and L. Simon. Predicting learnt clauses quality in modern SAT solver. IJCAI’09, pages 399–404, 2009.
R.A. Aziz, G. Chu, C.J. Muise, and P.J. Stuckey. #∃sat: Projected model counting. SAT’15, pages 121–137, 2015.
F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for #sat and Bayesian inference. FOCS’03,
pages 340–351, 2003.
F. Bacchus, and J. Winter. Effective preprocessing with hyper-resolution and equality reduction. SAT’04, pages 341–355,
2004.
E. Beth. On Padoa’s method in the theory of definition. Indagationes mathematicae 15:330–339, 1953.
A. Biere. Lingeling essentials, A tutorial on design and implementation aspects of the SAT solver Lingeling. POS’14,
page 88, 2014.
Y. Boufkhad, and O. Roussel. Redundancy in Random SAT Formulas. AAAI/IAAI’00, pages 273-278, 2000.

O. Čepek, P. Kučera, and P. Savický. Boolean functions with a simple certificate for CNF complexity. Discrete Applied
Mathematics 160(4-5): 365-382, 2012.
A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):608–647, 2001.
A. Darwiche. New advances in compiling cnf into decomposable negation normal form. ECAI’04, pages 328–332, 2004.
M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected boolean search problems. CPAIOR’09,
pages 71–86, 2009.
C.P. Gomes, A. Sabharwal, and B. Selman. Model counting. Handbook of Satisfiability, pages 633–654, 2009.
G. Gottlob, and C.G. Fermüller. Removing redundancy from a clause. Artificial Intelligence 61:263–289, 1993.
H. Hanand, F. Somenzi. Alembic: An efficient algorithm for CNF preprocessing. DAC’07, pages 582–587, 2007.
M. Heule, M. Järvisalo, and A. Biere. Clause elimination procedures for CNF formulas. LPAR’10, pages 357–371, 2010.
M. Heule, M. Järvisalo, and A. Biere.Covered clause elimination. LPAR’10, pages 41–46, 2010.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 116/119

References (for further reading)

M. Heule, M. Järvisalo, and A. Biere.Efficient cnf simplification based on binary implication graphs. SAT’11, pages
201–215, 2011.
M. Heule, M. Järvisalo, F. Lonsing, M. Seidl, and A. Biere. Clause elimination for SAT and QSAT. J. Artif. Intell. Res.
(JAIR), 53:127-168, 2015.
M. Järvisalo, A. Biere, and M. Heule. Simulating circuit-level simplifications on CNF. Journal of Automated Reasoning,
49(4):583–619, 2012.
V. Klebanov, N. Manthey, and C. J. Muise. Sat-based analysis and quantification of information flow in programs.
QUEST’13, pages 177–192, 2013.
J.-M. Lagniez, and P. Marquis. On Preprocessing Techniques and Their Impact on Propositional Model Counting. J.
Autom. Reasoning 58(4): 413-481, 2017.
J.-M. Lagniez, E. Lonca, and P. Marquis. Improving Model Counting by Leveraging Definability. IJCAI’16, pages 751-757,
2016
J. Lang, and P. Marquis. On propositional definability. Artificial Intelligence 172 (8-9):991–1017, 2008.
P. Liberatore. Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2): 203-232, 2005.
I. Lynce, and J. Marques-Silva. Probing-based preprocessing techniques for propositional satisfiability. ICTAI’03, pages
105–110, 2003.
N. Manthey. Coprocessor 2.0 - A flexible CNF simplifier - (tool presentation). SAT’12, pages 436–441, 2012.
N. Manthey. Solver description of RISS2.0 and PRISS2.0. Technical report, TU Dresden, Knowledge Representation
and Reasoning, 2012.
Ch.J. Muise, Sh.A. McIlraith, J.Ch. Beck, and E.I. Hsu. Dsharp: Fast d-DNNF compilation with sharpSAT. AI’12, pages
356–361, 2012.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 117/119

References (for further reading)

R. Ostrowski, É. Grégoire, B. Mazure, and L. Säıs. Recovering and exploiting structural knowledge from CNF formulas.
CP’02, pages 185–199, 2002.
A. Padoa. Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction logique à une théorie
déductive quelconque. Bibliothèque du Congrès International de Philosophie, Paris, pages 309–365, 1903.
C. Piette, Y. Hamadi, and L. Säıs. Vivifying propositional clausal formulae. ECAI’08, pages 525–529, 2008.
D. A. Plaisted, and S. Greenbaum. A Structure-Preserving Clause Form Translation. J. Symb. Comput. 2(3): 293-304,
1986.
M. Samer, and S. Szeider. Algorithms for propositional model counting, J. Discrete Algorithms 8 (1):50–64, 2010.
T. Sang, F. Bacchus, P. Beame, H.A. Kautz, and T. Pitassi. Combining component caching and clause learning for
effective model counting. SAT’04, 2004.
S. Subbarayan, and D. Pradhan. NiVER: Non increasing variable elimination resolution for preprocessing SAT
instances. SAT’04, pages 276–291, 2004.
S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20 (5):865–877, 1991 .
M. Thurley. sharpSAT - counting models with advanced component caching and implicit BCP. SAT’06, pages 424–429,
2006.
G. Tseitin. On the complexity of derivation in propositional calculus. Steklov Mathematical Institute, Chapter ”Structures
in Constructive Mathematics and Mathematical Logic”, pp. 115–125, 1968.
Ch. Umans. The Minimum Equivalent DNF Problem and Shortest Implicants. J. Comput. Syst. Sci. 63(4): 597-611, 2001.
H. Zhang and M.E. Stickel. An efficient algorithm for unit propagation. ISAIM’96, pages 166–169, 1996.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 118/119

NP-Preprocessing

Pierre Marquis

CRIL, U. Artois & CNRS,
Institut Universitaire de France

France

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 119/119

	Introduction
	Reducing CNF Formulae
	P-Preprocessings
	Occurrence Reduction (OR)
	Vivification (VI)
	Gate Detection and Replacement (GDR)

	NP-Preprocessings
	Backbone Identification (BI)

	Combining Preprocessings
	Implicit GDR thanks to Definability

