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Knowledge Compilation vs. Preprocessing

Two preprocessing approaches for circumventing the complexity
of computationally hard tasks

I knowledge compilation
input: Σ (in L1) compilation Ψ (in L2)

input: α (in L1)

resolution output: result

I preprocessing
input: Σ, α (in L1) preprocessing Ψ (in L1) resolution output: result

I The two approaches can be combined
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Knowledge Compilation vs. Preprocessing

I Main resemblances:
I making the resolution of the instance computationally easier

once the preprocessing step has been achieved
I no guarantee of success

I Main differences:
I ”hard” part vs. ”easy” part of the solving process
I handling of the variable part α of the input (does not exist in

general, can be preprocessed as well or not)
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Computationally Hard Tasks = ?

I sat
I Input: a CNF formula Σ
I Output: 1 if Σ is satisfiable, 0 otherwise
I The canonical NP-complete problem!

I #sat
I Input: a CNF formula Σ (plus eventually a satisfiable term α)
I Output: the number of models of Σ (conditioned by α)
I The canonical #P-complete problem!
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Satisfiability

I Σ 7→ 1 if Σ has a model, 0 otherwise

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I Σ is satisfiable since (for instance) 011 is a model of Σ
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Model Counting

I Σ 7→ ‖Σ‖ = ?

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I The models of Σ over {x , y , z} are :

011
100
101
111

I ‖Σ‖ = 4
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Model Counting

I Counting the models of a propositional formula is a key task
for a number of problems (especially in AI):

I probabilistic inference
I stochastic planning
I ...

I However #sat is a computationally hard task: #P-complete
I Even for subsets of formulae for which sat is easy

(e.g., monotone Krom formulae)!

I The ”power” of counting and its complexity are reflected by
Toda’s theorem:

Seinosuke Toda (Gödel Prize 1998):

PH ⊆ P#P
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Model Counting

I Many model counters have been developed:
I Exact model counters:

I search-based: Cachet, SharpSAT, etc.,
I compilation-based: C2D, Dsharp, D4, etc.
I ...

I Approximate model counters (SampleCount, etc.)
I ...
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Knowledge Compilation vs. Preprocessing
for Model Counting

I knowledge compilation
input: Σ (in CNF) compilation Ψ (in d-DNNF)

input: α (a consistent term)

model counting ‖Σ | α‖

I preprocessing
input: Σ, α (in CNF) p Ψ (in CNF) model counting ‖Σ | α‖
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P-Preprocessings

I Polynomial-time preprocessings
I Can prove useful for sat and #sat

I Related to the notion of kernelization: given a parameterized
problem (L ⊆ V ∗, κ : V ∗ → N), a kernelization for L is a
polynomial-time algorithm p that takes an instance Σ ⊆ V ∗

with parameter κ(Σ), and maps it to an instance p(Σ) ⊆ V ∗

such that Σ ∈ L if and only if p(Σ) ∈ L and the size of p(Σ)
is upper bounded by f (κ(Σ)) for some computable function f

I If L is decidable, then L is fixed-parameter tractable for
parameter κ(.) if and only if L has a kernelization
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Dozens of P-Preprocessings

I Vivification (VI) and a light form of it, called Occurrence Elimination (OE),
I Gate Detection and Replacement (GDR)
I Pure Literal Elimination (PLE)
I Variable Elimination (VE)
I Blocked Clause Elimination (BCE)
I Covered Clause Elimination (CCE)
I Failed Literal Elimination (FLE)
I Self-Subsuming Resolution (SSR)
I Hidden Literal Elimination (HLE)
I Subsumption Elimination (SE)
I Hidden Subsumption Elimination (HSE)
I Asymmetric Subsumption Elimination (ASE)
I Tautology Elimination (TE)
I Hidden Tautology Elimination (HTE)
I Asymmetric Tautology Elimination (ATE)
I ...
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Use in State-of-the-Art sat Solvers

I Glucose (exploits the SatELite preprocessor)
I Lingeling (has an internal preprocessor)
I Riss (use of the Coprocessor preprocessor)
I ...
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The CNF Input Assumption

sat solvers and model counters typically considers CNF inputs
I The CNF assumption is not restrictive
I Every circuit Ψ can be turned into a CNF formula Σ in linear

time

I The translation requires the introduction of new variables
Y = {y1, . . . , } and preserves

I the queries over the alphabet of the input circuit
(Plaisted/Greenbaum)

Ψ ≡ ∃Y .Σ

I and the number of models of the input (Tseitin)
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Translation into CNF: Tseitin

Ψ = (x1 ∧ x̄2) ∨ (x2 ∧ x3)
T (Ψ) ≡ (y1 ∨ y2) ∧ (y1 ⇔ (x1 ∧ x̄2)) ∧ (y2 ⇔ (x2 ∧ x3))

T (Ψ) =
y1 ∨ y2

ȳ1 ∨ x1

ȳ1 ∨ x̄2

y1 ∨ x̄1 ∨ x2

ȳ2 ∨ x2

ȳ2 ∨ x3

y2 ∨ x̄2 ∨ x̄3
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Translation into CNF: Plaisted/Greenbaum

Ψ = (x1 ∧ x̄2) ∨ (x2 ∧ x3)
PG (Ψ) ≡ (y1 ∨ y2) ∧ (y1 ⇒ (x1 ∧ x̄2)) ∧ (y2 ⇒ (x2 ∧ x3))

PG (Ψ) =
y1 ∨ y2

ȳ1 ∨ x1

ȳ1 ∨ x̄2

ȳ2 ∨ x2

ȳ2 ∨ x3
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Reducing What?

CNF Σ 7→ CNF p(Σ)

I What are the connections between Σ and p(Σ)?

I Removing clauses from Σ

I Removing literals in the clauses of Σ

I Updating Σ in another way
I ...
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Looking for IES or Minimal CNF is often too Expensive

I A clause δ of a CNF Σ is redundant if and only if Σ \ {δ} |= δ

I A CNF Σ is irredundant if and only if it does not contain any
redundant clause

I A subset Σ′ of a CNF Σ is an irredundant equivalent subset
(IES) of Σ if and only if Σ′ is irredundant and Σ′ ≡ Σ

I Deciding whether a CNF Σ is irredundant is NP-complete
I Deciding whether a CNF Σ′ is an irredundant equivalent

subset (IES) of a CNF Σ is Dp-complete
I Given an integer k , deciding whether a CNF Σ has an IES of

size at most k is Σp
2-complete

I Given an integer k , deciding whether there exists a CNF

formula Σ′ with at most k literals (or with at most k clauses)
equivalent to a given CNF Σ is Σp

2-complete
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Redundancy can be Useful!

Redundancy can be helpful (favoring the unit propagation power
by adding empowering clauses)

I x3 ∨ x4 is a logical consequence of
Σ =

x1 ∨ x2 ∨ x3

x̄1 ∨ x2 ∨ x4

x1 ∨ x̄2 ∨ x3

x̄1 ∨ x̄2 ∨ x4

I Assuming x̄3 ∧ x̄4, there is no unit refutation from Σ

I If x3 ∨ x4 (or x2 ∨ x3 ∨ x4 or x̄2 ∨ x3 ∨ x4) is added to Σ, a unit
refutation from Σ under the assumption x̄3 ∧ x̄4 exists

I Learning clauses is a key ingredient for efficient sat solvers
based on the CDCL architecture!
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Preserving What?

I Logical equivalence
I Number of models
I Satisfiability
I ...
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Levels of Preservation

A→ B : if a preprocessing p preserves A, then p preserves B

Logical equivalence

Number of models

Satisfiability
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Properties of Preprocessings

I Level of preservation (logical equivalence, number of models,
satisfiability)

I Confluence: is p(Σ) sensitive w.r.t. the way clauses and
literals in them are listed in Σ?

I Projectiveness: do we have p(p(Σ)) = p(Σ)?
(important to decide whether iterating p makes sense or not)
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Measuring the Impact of a Preprocessing

Several measures for the reduction achieved can be considered:
I The number of variables in the input CNF Σ

I The size of Σ (the number of literals or the number of clauses
in it)

I The treewidth of the primal graph of Σ

I The value of other structural parameters for Σ

I ...
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Example: Subsumption Elimination

A clause δ1 subsumes a clause δ2

if every literal of δ1 is a literal of δ2

SE : (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x̄3) 7→ x1 ∨ x2

I Preserves logical equivalence
I Hence preserves the number of models of the input (over the

original alphabet), and its satisfiability
I Is confluent and projective

I #var(Σ) ≥ #var(SE(Σ))

I #lit(Σ) ≥ #lit(SE(Σ))

I tw(Σ) ≥ tw(SE(Σ))
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Example: Pure Literal Elimination

A literal l is pure in Σ if every occurrence of the corresponding
variable has the same polarity

PLE : (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3) 7→ x̄2 ∨ x̄3

I Preserves the satisfiability of the input
I Does not preserve its number of models or logical

equivalence
I Is confluent and projective

I #var(Σ) ≥ #var(PLE(Σ))

I #lit(Σ) ≥ #lit(PLE(Σ))

I tw(Σ) ≥ tw(PLE(Σ))
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Estimating the Amount of Reduction Achieved

I For each p, the impact of p is evaluated empirically (and quantitatively)
on 182 CNF instances from the SAT LIBrary, gathered into 9 data sets, as
follows:

I Bayesian networks (60)
I BMC (11) (Bounded Model Checking)
I Circuit (28)
I Configuration (12)
I Handmade (28)
I Planning (17)
I Random (13)
I Scheduling (6)
I Qif (7) (Quantitative Information Flow analysis - security)

I Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB RAM
on Linux CentOS

I Time-out =1h
I Memory-out = 7.6 GiB
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Occurrence Reduction (OR)

I Occurrence reduction aims to remove some literals in the
clauses of Σ

I In order to determine whether a literal `j+1 can be removed
from a clause α of Σ, the approach consists in determining
whether the clause which coincides with α except that `j+1

has been replaced by ∼`j+1 is a logical consequence of Σ

I This is done by determining whether
Σ ∧ `j+1 ∧ ∼`1 ∧ . . . ∧ ∼`j is contradictory

I When this is the case, `j+1 can be removed from α without
questioning logical equivalence

I bcp is used as an incomplete yet efficient method to solve
the entailment problem
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Occurrence Reduction (OR)

Algorithm 1: OR Occurrence reduction
input : a CNF formula Σ
output: a CNF formula equivalent to Σ
L← sort(Lit(Σ));1
foreach ` ∈ L do2

foreach α ∈ Σ s.t. ` ∈ α do3
if ∅ ∈ bcp(Σ ∪ {`} ∪ {∼(α \ {`})}) then4
Σ←(Σ \ {α}) ∪ {α \ {`}};

return Σ5
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Occurrence Reduction (OR): Example

Σ =
a ∨ f a ∨ b ∨ c
b ∨ d ∨ e c ∨ ¬d ∨ e
b ∨ d ∨ ¬e c ∨ ¬d ∨ ¬e

L = (b, c , e,¬e, d ,¬d , a, f , ¬a, ¬b, ¬c)

OR(Σ) =
a ∨ f b ∨ c
b ∨ d c ∨ ¬d
b ∨ d c ∨ ¬d

a ∨ b ∨ c is reduced to b ∨ c and every occurrence of e has been
removed
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Properties of OR

I Preserves logical equivalence
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(OR(Σ))

I #lit(Σ) ≥ #lit(OR(Σ))

I tw(Σ) ≥ tw(OR(Σ))
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OR: Reduction of the Number of Variables
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Figure: Comparing #var(Σ) with #var(OR(Σ)).
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OR: Reduction of the Size
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OR: Reduction of the Treewidth
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Vivification (VI)

I Vivification aims to reduce Σ, i.e., to remove some clauses
and some literals in Σ while preserving equivalence

I Given a clause α = `1 ∨ . . . ∨ `k of Σ two rules are used in
order to determine whether α can be removed from Σ or
simply shortened

I Let α′ be any subclause of α
I On the one hand, if for any j ∈ 0, . . . , k − 1, one can prove

using bcp that Σ \ {α} |= α′, then for sure α is entailed by
Σ \ {α} so that α can be removed from Σ

I On the other hand, if one can prove using bcp that
Σ \ {α} |= α′ ∨ ∼`j+1, then `j+1 can be removed from α
without questioning equivalence
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Vivification (VI)

Algorithm 2: VI

input : a CNF formula Σ
output: a CNF formula equivalent to Σ
foreach α ∈ Σ do1

Σ←Σ \ {α};2
α′←⊥;3
I←bcp(Σ);4
while ∃` ∈ α s.t. ∼` /∈ I and α′ 6= > do5

α′←α′ ∨ `;6
I←bcp(Σ ∪ {∼α′});7
if ∅ ∈ I then α′←>;8

Σ←Σ ∪ {α′};9

return Σ10
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Vivification (VI): Example

Σ =
a ∨ b ∨ c ∨ d
a ∨ b ∨ c
a ∨ ¬d

Assume that the variables are processed w.r.t. the ordering
d < c < b < a

VI(Σ) =
a ∨ b ∨ c
a ∨ ¬d

The effect of VI on Σ is to eliminate the first clause a ∨ b ∨ c ∨ d
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Properties of VI

I Preserves logical equivalence
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(VI(Σ))

I #lit(Σ) ≥ #lit(VI(Σ))

I tw(Σ) ≥ tw(VI(Σ))
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VI: Reduction of the Number of Variables
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VI: Reduction of the Size
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VI: Reduction of the Treewidth
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Gate Detection and Replacement

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15
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x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15
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Gate Detection and Replacement

I Gate detection and replacement proves to be a valuable
preprocessing

I Only specific gates are sought for (literal equivalence,
AND/OR gates, XOR gates)

I The replacement Σ[`← β] requires to turn the resulting
formula into CNF

I It is implemented only if it it does not lead to increase the
size of the input (a ”small” increase can also be accepted)

I bcp (instead of a ”full” sat solver) is used for efficiency
reasons
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Literal Equivalence (LE)

I Literal equivalence aims to detect equivalences between
literals using bcp

I For each literal `, all the literals `′ which can be found
equivalent to ` using bcp are replaced by ` in Σ

I Taking advantage of bcp makes it more efficient than a
”syntactic detection” (if two binary clauses stating an
equivalence between two literals ` and `′ occur in Σ, then
those literals are found equivalent using bcp, but the
converse does not hold)
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Literal Equivalence (LE)

Algorithm 3: LE

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ; Unmark all variables of Φ;1
while ∃` ∈ Lit(Φ) s.t. var(`) is not marked do2

// detection

mark var(`);3
P`←bcp(Φ ∪ {`});4
N`←bcp(Φ ∪ {∼`});5
Γ←{`↔ `′|`′ 6= ` and `′ ∈ P` and ∼`′ ∈ N`};6

// replacement

foreach `↔ `′ ∈ Γ do7
replace ` by `′ in Φ;8

return Φ9
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Literal Equivalence (LE): Example

Σ =
a ∨ b ∨ c ∨ ¬d ¬a ∨ ¬b ∨ ¬c ∨ d
a ∨ b ∨ ¬c ¬a ∨ ¬b ∨ c
¬a ∨ b a ∨ ¬b
¬e ∨ ¬f ∨ h e ∨ f ∨ g
e ∨ ¬g ¬e ∨ ¬h

Assume that the variables of Σ are considered in the following
ordering: a < b < c < d < e < f < g < h

The equivalences (a⇔ b) ∧ (b ⇔ c) ∧(c ⇔ d) ∧ (e ⇔ ¬f ) are
detected

LE(Σ) =
¬f ∨ ¬g f ∨ ¬h
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Properties of LE

I Preserves the number of models (but not logical equivalence)
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(LE(Σ))

I #lit(Σ) ≥ #lit(LE(Σ))

I tw(Σ) 6≥ tw(LE(Σ))
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LE: Reduction of the Number of Variables
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Figure: Comparing #var(Σ) with #var(LE(Σ)).
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LE: Reduction of the Size
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Figure: Comparing #lit(Σ) with #lit(LE(Σ)).
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LE: Reduction of the Treewidth
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Figure: Comparing tw(Σ) with tw(LE(Σ)).
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AND/OR Gate Equivalence (AG)

I AND/OR gate equivalence aims to detect equivalences
`i ⇔ βi where βi is a conjunction or a disjunction of literals

I bcp is used in this objective
I Unlike previous approaches based on pattern matching (i.e.,

when one looks for clauses encoding an AND gate or an OR
gate), using bcp makes it more efficient (if clauses stating
the presence of an AND/OR gate occur in Σ, then AG will
find the gate – or a ”subsuming” one – but the converse is
not true)
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AND/OR Gate Equivalence (AG)

Algorithm 4: AG
input : a CNF formula Σ
output : a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection

Γ←∅; Unmark all literals of Φ;2
while ∃` ∈ Lit(Φ) s.t. ` is not marked do3

mark `;4
P`←(bcp(Φ ∪ {`}) \ (bcp(Φ) ∪ {`})) ∪ {∼`};5
if ∅ ∈ bcp(Φ ∪ P`) then6

let C` ⊆ P` s.t. ∅ ∈ bcp(Φ ∪ C`) and ∼` ∈ C` ;7
Γ←Γ ∪ {`↔

∧
`′∈C`\{∼`} `

′};8

// replacement

while ∃`↔ β ∈ Γ st. |β|<maxA and |Φ[`←β]| ≤ |Φ| do9
Φ←Φ[`←β];10
Γ←Γ[`←β];11

return Φ12
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AND/OR Gate Equivalence (AG): Example

Σ =
a ∨ b ∨ c ∨ d ¬a ∨ ¬b
¬a ∨ b ∨ ¬c ¬a ∨ b ∨ c ∨ ¬d
¬a ∨ e a ∨ f

Assume that the literals are processed w.r.t. the literal ordering:
a < ¬a < b < ¬b < c < ¬c < d < ¬d < e < ¬e < f < ¬f

The gate a⇔ (¬b ∧ ¬c ∧ ¬d) is detected and a is replaced by its
definition

AG(Σ) =
b ∨ c ∨ d ∨ e ¬b ∨ f
¬c ∨ f ¬d ∨ f
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Properties of AG

I Preserves the number of models (but not logical equivalence)
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(AG(Σ))

I #lit(Σ) ≥ #lit(AG(Σ))

I tw(Σ) 6≥ tw(AG(Σ))
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AG: Reduction of the Number of Variables
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Figure: Comparing #var(Σ) with #var(AG(Σ)).
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AG: Reduction of the Size
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Figure: Comparing #lit(Σ) with #lit(AG(Σ)).
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AG: Reduction of the Treewidth
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Figure: Comparing tw(Σ) with tw(AG(Σ)).
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XOR Gate Equivalence (XG)

I XOR gate detection and replacement aims to detect
equivalences `i ⇔ χi where χi is a XOR disjunction of
literals

I The detection is ”syntactic” (XOR disjunctions of literals
containing a limited number of literals are targeted)

I The resulting set of gates, which can be viewed as a set of
XOR clauses since `i ↔ χi is equivalent to ∼`i ⊕ χi , is
turned into reduced row echelon form using Gauss algorithm

I Every `i is replaced by its definition χi in Σ, provided that
the normalization it involves does not generate ”large”
clauses
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XOR Gate Equivalence (XG)

Algorithm 5: XG

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection

Γ←{XOR clauses syntactically detected};2

// Gaussian elimination

Γ←Gauss({`1 ↔ χ1, `2 ↔ χ2, . . . , `k ↔ χk})3

// replacement

for i←1 to k do4
if @α ∈ Φ[`i←χi ] s.t. |α| > maxX then Φ←Φ[`i←χi ];5

return Φ6
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XOR Gate Equivalence (XG): Example

Σ =
b ∨ d ¬b ∨ ¬d
¬a ∨ ¬b ∨ c a ∨ ¬b ∨ ¬c
¬a ∨ b ∨ ¬c a ∨ b ∨ c
b ∨ e a ∨ f

Suppose that the two XOR gates b ⊕ d and a⊕ b ⊕ c are
detected successively

XG(Σ) =
¬d ∨ e c ∨ d ∨ f
¬c ∨ ¬d ∨ f

The first six clauses which participate in the XOR gates are made
valid through the replacement, the clause b ∨ e is replaced by
¬d ∨ e , and the clause a ∨ f is replaced by the two clauses
c ∨ d ∨ f and ¬c ∨ ¬d ∨ f
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Properties of XG

I Preserves the number of models (but not logical equivalence)
I Neither is confluent nor is projective

I #var(Σ) ≥ #var(XG(Σ))

I #lit(Σ) ≥ #lit(XG(Σ))

I tw(Σ) 6≥ tw(XG(Σ))
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XG: Reduction of the Number of Variables
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Figure: Comparing #var(Σ) with #var(XG(Σ)).
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XG: Reduction of the Size
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Figure: Comparing #lit(Σ) with #lit(XG(Σ)).
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XG: Reduction of the Treewidth

1

10

100

10 100

X
O
R
g
a
t
e
S
i
m
p
l

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random

Figure: Comparing tw(Σ) with tw(XG(Σ)).

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th , 2017 68/119



Overview

Introduction
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NP-Preprocessings

I Taking advantage of sat solvers for simplifying the input CNF
during a preprocessing step

I An option that makes sense when tackling problems which
are seemingly located ”above NP” (like #sat)

I Backbone identification
I Definability
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Backbone Identification (BI)

I The backbone of a CNF formula Σ is the set of all literals
which are implied by Σ when Σ is satisfiable, and is the
empty set otherwise

I The purpose of the BI preprocessing is to make the backbone
B of the input CNF formula Σ explicit, to conjoin it to Σ, and
to use bcp (Boolean Constraint Propagation) on the
resulting set of clauses
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Backbone Identification (BI)

Algorithm 6: BI Backbone Identification
input : a CNF formula Σ
output: the CNF bcp(Σ ∪ B), where B is the backbone of Σ
B←∅;1
I←solve(Σ);2
while ∃` ∈ I s.t. ` /∈ B do3
I ′←solve(Σ ∪ {∼`});4
if I ′ = ∅ then B←B ∪ {`}else I←I ∩ I ′;5

return bcp(Σ ∪ B)6
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Backbone Identification (BI): Example

Σ =
a ∨ b
¬a ∨ b
¬b ∨ c
c ∨ d
¬c ∨ e ∨ f
f ∨ ¬g

The backbone of Σ is equal to B = {b, c}

BI(Σ) =
b
c
e ∨ f
f ∨ ¬g
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Properties of BI

I Preserves logical equivalence
I Is confluent and projective

I #var(Σ) ≥ #var(BI(Σ))

I #lit(Σ) ≥ #lit(BI(Σ))

I tw(Σ) ≥ tw(BI(Σ))
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BI: Reduction of the Number of Variables
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Figure: Comparing #var(Σ) with #var(BI(Σ)).
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BI: Reduction of the Size
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Figure: Comparing #lit(Σ) with #lit(BI(Σ)).
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BI: Reduction of the Treewidth
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Putting the Elementary Preprocessings Together

The pmc preprocessor
I Iteration makes sense
I The combination to be chosen depends on what is expected

to be preserved
I eq corresponds to the parameter assignment of pmc where

optV = optB = optO = 1 and optG = 0. It is
equivalence-preserving.

I #eq corresponds to the parameter assignment of pmc where
optV = optB = optO = 1 and optG = 1. This combination is
guaranteed only to preserve the number of models of the
input.
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The pmc Preprocessor

Algorithm 7: pmc

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
if optB then Φ←BI(Φ);2
i←0;3
while i < numTries do4

i←i + 1;5
if optO then Φ← OR(Φ);6
if optG then Φ←XG(AG(LE(Φ)));7
if optV then Φ←VI(Φ);8
if fixpoint then break ;9

return Φ10
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eq: Reduction of the Number of Variables

1

10

100

1000

10000

100000

100 1000 10000 100000

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Scheduling

Figure: Comparing #var(Σ) with #var(eq(Σ)).
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eq: Reduction of the Size
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eq: Reduction of the Treewidth
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#eq: Reduction of the Number of Variables
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#eq: Reduction of the Size
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#eq: Reduction of the Treewidth
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Improving Model Counting?

I Reducing #var(Σ), #lit(Σ), and tw(Σ) is a priori valuable
for improving the model counting task (computationally
speaking)

I But it could be the case that the preprocessings used are too
much time-demanding and that they do not really lead to
easier instances but concentrate their difficulty instead...

I Some large-scale experiments are needed to determine
whether some improvements are actually achieved

I Cachet, SharpSAT, C2D, and Dsharp are used downstream
I C2D and Dsharp are used as compilers (since the objective is

to preserve the information given in the input, only eq is
considered as an admissible preprocessing combination)
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Empirical Setting

I 1449 CNF instances from the SAT LIBrary
I 9 data sets: BMC (18), Circuit (68), Qif (7), Planning (34),

Random (105), Scheduling (6), Handmade (58), Configuration
(35), Bayesian networks (1118)

I Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32
GiB RAM on Linux CentOS

I Time-out =1h
I Memory-out = 7.6 GiB
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Efficiency of #eq
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Impact of eq on Cachet
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Figure: Comparison of the computation times needed to count the
number of models of an instance using Cachet, when no preprocessing
is used vs. when the eq combination has been applied first.
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Impact of eq on SharpSAT
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Figure: Comparison of the computation times needed to count the
number of models of an instance using SharpSAT, when no preprocessing
is used vs. when the eq combination has been applied first.
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Impact of eq on C2D (compilation times)
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Figure: Comparisons of the compilation times of C2D, when no
preprocessing is used vs. when the eq combination has been applied
first.
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Impact of eq on C2D (sizes of the compiled forms)
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Figure: Comparisons of the sizes of the compiled forms obtained using
C2D, when no preprocessing is used vs. when the eq combination has
been applied first.
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Impact of eq on Dsharp (compilation times)
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Figure: Comparisons of the compilation times of Dsharp, when no
preprocessing is used vs. when the eq combination has been applied
first.
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Impact of eq on Dsharp (sizes of the compiled forms)
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Figure: Comparisons of the sizes of the compiled forms obtained using
Dsharp, when no preprocessing is used vs. when the eq combination has
been applied first.
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Empirical Results

I Empirically, each of eq and #eq proves to be a useful
preprocessing combination (whatever the downstream model
counter)

I The gate-detection-and-replacement preprocessings appear
as particularly interesting for improving search-based model
counters

I However this family of preprocessings is restricted to a small
subset of target gates

I Is it possible to do better, and to enlarge this family?
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Overview

Introduction

Reducing CNF Formulae

P-Preprocessings

NP-Preprocessings

Combining Preprocessings

Implicit GDR thanks to Definability
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Limitations of the Gate Detection and Replacement
Preprocessings

I The replacement phase requires gates to be detected
I The search space for gates is huge
I The size of a gate can be huge as well

I Identifying ”complex gates” is incompatible with the
efficiency expected for a preprocessing:
only ”simple” gates are targeted
literal equivalences y ↔ x1

AND/OR gates y ↔ (x1 ∧ x2 ∧ x3)
XOR gates y ↔ (x1 ⊕ x2)
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Overcoming the Limitations (1)

I The (explicit) detection phase can be replaced by an implicit
detection phase

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Let us ask Evert and Alessandro for some help ...
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Evert Willem Beth (1908-1964)

I Σ explicitly defines y in terms of
X = {x1, . . . , xn} iff there exists a
formula f (x1, . . . , xn) over X such that

Σ |= y ↔ f (x1, . . . , xn)

I Σ implicitly defines y in terms of
X = {x1, . . . , xn} iff for every
canonical term γX over X , we have
Σ ∧ γX |= y or Σ ∧ γX |= y

I Beth’s theorem: Σ explicitly defines y
in terms of X iff Σ implicitly defines
y in terms of X
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Alessandro Padoa (1868-1937)

Padoa’s theorem:

Let Σ′X be equal to Σ where each variable
but those of X have been renamed in a
uniform way
If y 6∈ X , then Σ (implicitly) defines y in
terms of X iff Σ ∧ Σ′X ∧ y ∧ y ′ is
inconsistent

Deciding whether Σ (implicitly) defines y
in terms of X is ”only” coNP-complete
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Overcoming the Limitations (2)

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate detection = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a sat solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]

I The replacement phase can be replaced by an output variable
elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ
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The B+ E Preprocessor

A two-step preprocessing
I ”Detection = Bipartition”:

compute a definability bipartition 〈I ,O〉 of Σ such that
I ∪ O = Var(Σ), I ∩ O = ∅, and Σ defines every variable
o ∈ O in terms of I

I ”Replacement = Elimination”:
compute ∃E .Σ for E ⊆ O

I Steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint
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Back to GDR

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ defines u in terms of {x , y , z}
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Detecting u as an Output Variable and Eliminating it

Identification:
Σ ∧ Σ′{x ,y ,z} ∧ u ∧ u′ is inconsistent

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u
x ∨ u′ ∨ v ′

x ∨ y ∨ u′

x ∨ z ∨ u′

x ∨ u′

y ∨ z ∨ u′

u
u′

Elimination:
computing resolvents over u

x ∨ v ∨ x valid
x ∨ v ∨ y ∨ z
x ∨ y ∨ x valid
x ∨ y ∨ y ∨ z valid
x ∨ z ∨ x valid
x ∨ z ∨ y ∨ z valid

‖Σ‖ = ‖x ∨ v ∨ y ∨ z‖ = 15
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Tuning the Computational Effort

Both steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint

I It is not necessary to determine a definability bipartition 〈I ,O〉
with |I | minimal
⇒ B is a greedy algorithm (one definability test per variable)
⇒ Only the minimality of I for ⊆ is guaranteed

I It is not necessary to eliminate in Σ every variable of O but
focusing on a subset E ⊆ O is enough
⇒ Eliminating every output variable could lead to an exponential
blow up
⇒ The elimination of y ∈ O is committed only if |Σ| after the
elimination step and some additional preprocessing (occurrence
simplification and vivification) remains small enough
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Experiments

Objectives:
I Evaluating the computational benefits offered by B + E when

used upstream to state-of-the-art model counters:
I the search-based model counter Cachet
I the search-based model counter SharpSAT
I the compilation-based model counter C2D

I Comparing the benefits offered by B + E with those offered by
our previous preprocessor pmc (based on gate identification
and replacement) or with no preprocessing
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Empirical Results
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Empirical Results

B + E vs. no preprocessing
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(b) B+ E+C2D vs. C2D

Figure: Model counting time reductions achieved by B + E vs. no
preprocessing
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Figure: Model counting time reductions achieved by B + E vs. pmc
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Empirical Results

I The experiments clearly show the benefits offered by B + E

I B + E appears typically as a better preprocessor than pmc

since it leads typically to improved performances (smaller
computation times)
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