
Top-Down Knowledge Compilation

Jean-Marie Lagniez & Pierre Marquis∗

CRIL, U. Artois & CNRS
Institut Universitaire de France∗

France

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 2/127

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 3/127

Contraint Programming

Σ Solver

Constraint programming: two steps
I modeling the problem with a set of constraints Σ

⇒ constraints representation with a dedicated formalism: sat,
csp, pseudo, ...

I solving the problem

⇒ using a constraint-based solver to find a solution

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 4/127

Contraint Programming

Σ Solver

Constraint programming: two steps
I modeling the problem with a set of constraints Σ

⇒ constraints representation with a dedicated formalism: sat,
csp, pseudo, ...

I solving the problem

⇒ using a constraint-based solver to find a solution

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 4/127

The sat Problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)

I Propositional variables: a, b, c

I Literals: a,¬a

I Clauses: a ∨ ¬b (the constraints)

I CNFformula: Σ

I sat problem: does there exist an
interpretation I of the variables that satisfies
the formula Σ?

I Try all the possibility: illusory!

Number of instructions Time needed

23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 5/127

The sat Problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)

a b c

⊥ ⊥ ⊥

I Propositional variables: a, b, c

I Literals: a,¬a

I Clauses: a ∨ ¬b (the constraints)

I CNFformula: Σ

I sat problem: does there exist an
interpretation I of the variables that satisfies
the formula Σ?

I Try all the possibility: illusory!

Number of instructions Time needed

23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 5/127

The sat Problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)

a b c

> ⊥ ⊥

I Propositional variables: a, b, c

I Literals: a,¬a

I Clauses: a ∨ ¬b (the constraints)

I CNFformula: Σ

I sat problem: does there exist an
interpretation I of the variables that satisfies
the formula Σ?

I Try all the possibility: illusory!

Number of instructions Time needed

23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 5/127

The sat Problem

Σ = (¬a ∨ ¬b ∨ ¬c)
∧ (a ∨ c)
∧ (a ∨ b)
∧ (¬b ∨ ¬c)

a b c

> ⊥ ⊥

I Propositional variables: a, b, c

I Literals: a,¬a

I Clauses: a ∨ ¬b (the constraints)

I CNFformula: Σ

I sat problem: does there exist an
interpretation I of the variables that satisfies
the formula Σ?

I Try all the possibility: illusory!

Number of instructions Time needed

23 = 8 immediate
237 = 80× 109 1 second
256 = 8× 1016 ≈ 277 hours
260 = 1018 166 days
2128 = 340× 1038 ≥ 3 billion of years

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 5/127

The Power of sat

I sat is NP-complete

I Each problem in NP can be reduced in polynomial time to sat

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 6/127

The Power of sat

I sat is NP-complete

I Each problem in NP can be reduced in polynomial time to sat

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 6/127

Several Approaches to sat Solving

I Complete methods
I dp algorithm
I dpll algorithm
I cdcl sat solver
I . . .

I Incomplete methods
I genetic algorithms
I ant colony algorithms
I local search (rl)
I . . .

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 7/127

Several Approaches to sat Solving

I Complete methods
I dp algorithm
I dpll algorithm
I cdcl sat solver
I . . .

I Incomplete methods
I genetic algorithms
I ant colony algorithms
I local search (rl)
I . . .

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 7/127

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 8/127

Resolution

I Two clauses that contain a variable x in opposite phases
(polarities) imply a new clause that contains all literals
except x and ¬x

x ∨ y ∨ ¬z ⊗ ¬x ∨ t ∨ u

y ∨ ¬z ∨ t ∨ u

I Why is this true?

I Making all the resolutions on a variable x in Σ is a way to
forget it:

∃x .Σ ≡ (Σ|x) ∨ (Σ|¬x)

I Yields a complete proof system for unsatisfiability of CNFs

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 9/127

The Davis-Putnam Algorithm

I Iteratively select a variable x to perform resolution on
I Consider the resolvents and the ones not containing x
I Termination:

I either the empty clause is derived (conclude UNSAT)
I or all variables have been eliminated

I Let Σ s.t. x does not occur in Ψ, αi and βi :

Σ =Ψ ∪ {x ∨ α1, x ∨ α2, . . . , x ∨ αnx ,¬x ∨ β1,¬x ∨ β2, . . . ,¬x ∨ βn¬x}
=Ψ ∪ {x ∨ (α1 ∧ α2 ∧ . . . ∧ αnx),¬x ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

I The truth value of x does not care, so satisying Σ is
equivalent to satisfy:

Σ′ =Ψ ∪ {(α1 ∧ α2 ∧ . . . ∧ αnx) ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

=Ψ ∪ {
nx∧
i=1

n¬x∨
j=1

αi ∨ βj}

I Can generate an exponential number of clauses!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 10/127

The Davis-Putnam Algorithm

I Iteratively select a variable x to perform resolution on
I Consider the resolvents and the ones not containing x
I Termination:

I either the empty clause is derived (conclude UNSAT)
I or all variables have been eliminated

I Let Σ s.t. x does not occur in Ψ, αi and βi :

Σ =Ψ ∪ {x ∨ α1, x ∨ α2, . . . , x ∨ αnx ,¬x ∨ β1,¬x ∨ β2, . . . ,¬x ∨ βn¬x}
=Ψ ∪ {x ∨ (α1 ∧ α2 ∧ . . . ∧ αnx),¬x ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

I The truth value of x does not care, so satisying Σ is
equivalent to satisfy:

Σ′ =Ψ ∪ {(α1 ∧ α2 ∧ . . . ∧ αnx) ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

=Ψ ∪ {
nx∧
i=1

n¬x∨
j=1

αi ∨ βj}

I Can generate an exponential number of clauses!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 10/127

The Davis-Putnam Algorithm

I Iteratively select a variable x to perform resolution on
I Consider the resolvents and the ones not containing x
I Termination:

I either the empty clause is derived (conclude UNSAT)
I or all variables have been eliminated

I Let Σ s.t. x does not occur in Ψ, αi and βi :

Σ =Ψ ∪ {x ∨ α1, x ∨ α2, . . . , x ∨ αnx ,¬x ∨ β1,¬x ∨ β2, . . . ,¬x ∨ βn¬x}
=Ψ ∪ {x ∨ (α1 ∧ α2 ∧ . . . ∧ αnx),¬x ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

I The truth value of x does not care, so satisying Σ is
equivalent to satisfy:

Σ′ =Ψ ∪ {(α1 ∧ α2 ∧ . . . ∧ αnx) ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

=Ψ ∪ {
nx∧
i=1

n¬x∨
j=1

αi ∨ βj}

I Can generate an exponential number of clauses!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 10/127

The Davis-Putnam Algorithm

I Iteratively select a variable x to perform resolution on
I Consider the resolvents and the ones not containing x
I Termination:

I either the empty clause is derived (conclude UNSAT)
I or all variables have been eliminated

I Let Σ s.t. x does not occur in Ψ, αi and βi :

Σ =Ψ ∪ {x ∨ α1, x ∨ α2, . . . , x ∨ αnx ,¬x ∨ β1,¬x ∨ β2, . . . ,¬x ∨ βn¬x}
=Ψ ∪ {x ∨ (α1 ∧ α2 ∧ . . . ∧ αnx),¬x ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

I The truth value of x does not care, so satisying Σ is
equivalent to satisfy:

Σ′ =Ψ ∪ {(α1 ∧ α2 ∧ . . . ∧ αnx) ∨ (β1 ∧ β2 ∧ . . . ∧ βn¬x)}

=Ψ ∪ {
nx∧
i=1

n¬x∨
j=1

αi ∨ βj}

I Can generate an exponential number of clauses!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 10/127

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 11/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL-based SAT Solvers

I Perform a depth-first search through the space of possible
variable assignments

I Stop when a satisfying assignment is found or all possibilities
have been tried

Σ = {¬a,¬b ∨ c}
•

•

•

⊥
c

⊥
¬c

b

•

⊥
c

⊥
¬c

¬b

a

•

•

>
c

b

¬a

Possible optimizations:

I Skip branches where no satisfying assignments can occur
I Organize the search to maximize the amount of the search

space that can be skipped
Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 12/127

DPLL algorithm

Algorithm 1: DPLL

Input: Σ a set of clauses
Output: > if Σ is satisfiable, ⊥ otherwise
Σ←− simplification(Σ);1

if (Σ = ∅) then return >;2

if (⊥ ∈ Σ) then return ⊥;3

`←− pickLiteral(Σ);4

return DPLL(Σ ∧ `) or DPLL(Σ ∧ ¬`)5

I pickLiteral: select some variable and assign it a value

I simplification: simplify the formula using syntactic rules
(unit propagation a.k.a. boolean constraint propagation
(BCP))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 13/127

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 14/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Boolean Constraint Propagation (BCP)

I A clause of size 1 is called unit clause
I The literal belonging to a unit clause is called unit literal

I The unit propagation process is the simplification rule which
is used in every dpll-based sat solver

I Applying the rule consists in recursively assigning the unit
literals and then simplifying the formula until a fixed
point is reached

α1 : a α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ b
α4 : ¬a ∨ b α5 : ¬c ∨ ¬e α6 : b ∨ ¬d ∨ ¬a

I In practice, most of the affectations result from the unit
propagation process (more than 90%)

I This explains why a lot of efforts has been devoted to
improve this process (watched literals)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 15/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

k ,¬k

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

i , g ,¬g

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

¬k,¬h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

¬k,¬h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

¬k,¬h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

¬k,¬h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

¬k,¬h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

¬k,¬h

•

•

•

•

⊥
e

⊥
¬e

¬b
•

⊥
e

•

>
¬i

¬e

b

c

¬a

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 16/127

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 17/127

Trashing

Σ = {a∨ b,¬a∨ b∨ c,¬b∨ c ∨ d ,¬b∨ c ∨¬d ,¬b∨¬c ∨ d ,¬b∨¬c ∨¬d}∪Ω

with Var(Ω) ∩ {a, b, c, d} = ∅

Σ

Ω ∪
{

(c ∨ d), (c ∨ ¬d),
(¬c ∨ d), (¬c ∨ ¬d)

}¬a

Ω ∪
{

(b ∨ c), (¬b ∨ c ∨ d), (¬b ∨ c ∨ ¬d),
(¬b ∨ ¬c ∨ d), (¬b ∨ ¬c ∨ ¬d)

}a

Complete tree for Ω

•{
(c ∨ d), (c ∨ ¬d),

(¬c ∨ d), (¬c ∨ ¬d)

}

⊥ ⊥

•

Satisfaction

path for Ω

{
(b ∨ c), (¬b ∨ c ∨ d), (¬b ∨ c ∨ ¬d),

(¬b ∨ ¬c ∨ d), (¬b ∨ ¬c ∨ ¬d)

}
{

(¬b ∨ d), (¬b ∨ ¬d)
}

{}
¬b

c

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 18/127

Trashing

Σ = {a∨ b,¬a∨ b∨ c,¬b∨ c ∨ d ,¬b∨ c ∨¬d ,¬b∨¬c ∨ d ,¬b∨¬c ∨¬d}∪Ω

with Var(Ω) ∩ {a, b, c, d} = ∅
Σ

Ω ∪
{

(c ∨ d), (c ∨ ¬d),
(¬c ∨ d), (¬c ∨ ¬d)

}¬a

Ω ∪
{

(b ∨ c), (¬b ∨ c ∨ d), (¬b ∨ c ∨ ¬d),
(¬b ∨ ¬c ∨ d), (¬b ∨ ¬c ∨ ¬d)

}a

Complete tree for Ω

•{
(c ∨ d), (c ∨ ¬d),

(¬c ∨ d), (¬c ∨ ¬d)

}

⊥ ⊥

•

Satisfaction

path for Ω

{
(b ∨ c), (¬b ∨ c ∨ d), (¬b ∨ c ∨ ¬d),

(¬b ∨ ¬c ∨ d), (¬b ∨ ¬c ∨ ¬d)

}
{

(¬b ∨ d), (¬b ∨ ¬d)
}

{}
¬b

c

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 18/127

Branching Heuristics

I Choosing the next variable to assign and its first polarity is
a decisive step

I Its impact on the size of the search tree explored (so on the
CPU time to explore it) is huge

I However, choosing the variables that minimize the size of the
search tree is hard (NP-hard)

I Several branching heuristics have been pointed out
I Three families:

I syntactic approaches
I look-ahead approaches
I look-back approaches

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 19/127

Syntactic Branching Heuristics (I)

Aim: choosing a variable that produces a maximum of unit
propagation or that satisfies a maximum number of clauses

I bohm selects a variable that maximizes, w.r.t. the lexicographic
order, the vector (H1(x),H2(x), . . . ,Hn(x)) with:

Hi (x) = 1×max(hi (x), hi (¬x)) + 2×min(hi (x), hi (¬x))

where hi (x) is the number of clauses of size i containing x

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 20/127

Syntactic branching heuristics (II)

I moms selects a variable with a Maximum number of
Occurrences in Minimum Size Clauses

moms(x , k) = maxk((f k(x) + f k(¬x))× 2k + f k(x)× f k(¬x))

with f k(x) is the number of unsatisfied clauses of size ≤ k
containing x

I jw is based on a similar idea as moms

J(`) =
∑

α∈Σ|`∈α
2−|α|

jw-os maximizes J(`) and jw-ts maximizes J(x) + J(¬x)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 21/127

Look-Ahead Branching Heuristics

Aim: anticipate the effect of affecting a variable. Such approaches
leads to a ”local” breadth-first exploration of the search tree

I BCP uses the unit propagation process to decide the next
variable to assign. The variable that maximizes the number of
unit literals is selected first

I bsh is a Backbone Search Heuristic. A variable x that
maximizes score(k, x) = bsh(k , x)× bsh(k,¬x) is selected
first

Algorithm 2: bsh(i : int, ` : literal)

B(`)← {α1, . . . , αn} ⊆ Σ s.t. ∀α, |α| ≤ 3 and ` ∈ α;
if i = 1 then

return
∑

(u∨v)∈B(`)

(2× bin(¬u) + ter(¬u))× (2× bin(¬v) + ter(¬v))

else
return

∑
(u∨v)∈B(`)

bsh(i - 1, ¬u) × bsh(i - 1, ¬v);

end

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 22/127

Look-Back Branching Heuristics

Aim: keeping information from a long phase of search and
deduction to avoid the repetition of the same mistakes in the
future (nogoods or variable activity)

I The weighting of the conflict clauses is based on the
following observation: when a clause has been proved
unsatisfiable it is important to exploit this piece of
information for the rest of the search. To do so, it is enough
to increase the weight of the variables that conducted to
unsatisfiability

I vsids associates a counter, called activity, with each variable.
When a conflict occurs, the activity of variables that are
responsible of this failure are bumped

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 23/127

Polarity Heuristics

I When a variable is selected to be assigned a truth value
must be chosen. This choice is at least as important as the
choice of the variable itself

I Deciding the best way to assign a variable is NP-hard, so
heuristics must be used:

I false always assigns to false (used in minisat)
I jw selects the phase of the variable that maximizes the jw

function
I occurrence tries to maximize the number of satisfied

clauses. The weight of ` is given by the number of its
occurrences

I progress saving tries to avoid solving several times the
same part of the instance. To do so, when a variable is
assigned during the search, its phase is saved. Then, when a
variable has to be assigned again, its phase is chosen as
previously

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 24/127

Overview

sat Solving
Introduction
dp
dpll
Boolean Constraint Propagation (BCP)
Heuristics
cdcl

Conflict analysis
Watched Literals
Restarts
Reducing the Learnt Clauses Database
cdcl algorithm
In practice ...

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 25/127

What is a cdcl sat Solver?

I Extend DPLL SAT solver with:
I Clause learning and non-chronological backtracking

I Exploit UIPs
I Minimize learned clauses
I Opportunistically delete clauses

I Can restart the current search

I Lazy data structures
I Watched literals

I Conflict-guiding branching
I Lightweight branching heuristics
I Phase saving

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 26/127

A Motivating Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

h

i , g ,¬g

•

•

•

•

⊥
e

¬b

c

¬a

¬e ∨ ¬i ∨ g ⊗ ¬i ∨ ¬g = ¬e ∨ ¬i

¬e ∨ ¬i ⊗ ¬e ∨ i = ¬e

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 27/127

A Motivating Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

¬b

c

¬a

¬e ∨ ¬i ∨ g ⊗ ¬i ∨ ¬g = ¬e ∨ ¬i

¬e ∨ ¬i ⊗ ¬e ∨ i = ¬e

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 27/127

A Motivating Example

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

d

¬f , j

•

•

•

•

⊥
e

¬b

c

¬a

¬e ∨ ¬i ∨ g ⊗ ¬i ∨ ¬g = ¬e ∨ ¬i

¬e ∨ ¬i ⊗ ¬e ∨ i = ¬e

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 27/127

cdcl sat Solver Ingredients

I Assignment, BCP
I heuristic to choose the next variable to assign
I heuristic to choose its polarity
I BCP

Σ = {α1 : a ∨ d} ¬a dα1

I Conflict analysis and learning
I implication graph
I learning
I back-jumping

Constructing and analyzing an implication graph

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 28/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

g 4
α9

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

g 4
α9

⊥

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

¬g 4
α6

g 4
α9

g 4
α9

⊥

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

g 4
α9

⊥

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Generation

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

Assignment, Propagation

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

g 4
α9

⊥

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 29/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

g 4
α7

⊥

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

g 4
α7

⊥⊥

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

i4
α5

¬g 4
α6

¬g 4
α6

g 4
α7

g 4
α7

⊥

δ = g 4 ∨ ¬g 4

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4e4

i4
α5
i4
α5

¬g 4
α6

¬g 4
α6

g 4
α7

⊥

δ = ¬c2 ∨ ¬e4 ∨ ¬i4 ∨ g 4

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2
α2

j2
α3

j2
α3

¬b3 h3
α4

e4e4

i4
α5
i4
α5

¬g 4
α6

g 4
α7

⊥

δ = ¬c2 ∨ ¬j2 ∨ ¬e4 ∨ ¬i4

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2
α2

j2
α3

j2
α3

¬b3 h3
α4

e4e4

i4
α5

¬g 4
α6

g 4
α7

⊥

δ = ¬c2 ∨ ¬j2 ∨ ¬e4

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Conflict Graph Analysis

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2c2 ¬f 2
α2

j2
α3

j2
α3

¬b3 h3
α4

e4e4

i4
α5

¬g 4
α6

g 4
α7

⊥

δ = ¬c2 ∨ ¬j2 ∨ ¬e4

I Stops as soon as the resolvent has a unique literal from the
last decision level (FUIP)

I δ is added to the CNF(this ensures the completeness of the
search)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 30/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬b3 h3
α4

e4

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬e2
δ1

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬e2
δ1

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e2

k2
α7

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬e2
δ1

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e2

k2
α7

h2
α8

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬e2
δ1

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e2

k2
α7

h2
α8

b2
α4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬e2
δ1

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e2

k2
α7

h2
α8

b2
α4

¬i3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Back-Jumping

α1 : a ∨ d α2 : a ∨ ¬c ∨ ¬f α3 : ¬d ∨ j ∨ f
α4 : b ∨ h α5 : ¬c ∨ ¬e ∨ i α6 : ¬i ∨ ¬j ∨ ¬g
α7 : e ∨ ¬k α8 : e ∨ ¬h ∨ k α9 : ¬c ∨ ¬e ∨ ¬i ∨ g

¬a1 d1
α1

c2 ¬f 2
α2

j2
α3

¬e2
δ1

δ1 = ¬c2 ∨ ¬j2
α3
∨ ¬e2

k2
α7

h2
α8

b2
α4

¬i3

SATISFIABILITY PROVED

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 31/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true
a : {} b : {α1}

¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true
a : {} b : {α1}

¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3, α1}
¬a : {α1, α3} ¬b : {α2, α3} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Watched Literals

I BCP is triggered when all but one literal in a clause is
assigned to false

I Idea: when two variables are either unassigned or one is
assigned to true, no need to do anything

I Checking whether this condition is satisfied is enough

α1 : ¬a ∨ b ∨ c α2 : ¬a ∨ ¬c ∨ ¬b α3 : ¬a ∨ c ∨ ¬b

I Mapping between watched literals and the clauses
containing them

I When ` is propagated to true it is enough to consider the
clauses mapped to ¬` and to search for another watched
literal

I Let us suppose that a is assigned to true

a : {} b : {α1} c : {α3, α1}
¬a : {} ¬b : {α2, α3} ¬c : {α2}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 32/127

Heavy-Tailed Phenomenon

I Depth-first search procedures often exhibit a remarkable
variability in the time required to solve the instance

I Heavy-tailed behavior arises from the fact that wrong
branching decisions may lead to explore an exponentially
large subtree that contains no solutions

I Restarts is a good mechanism for avoiding such an issue

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 33/127

Restarts

I Often it a good strategy to abandon what you do and restart
I for satisfiable instances the solver may get stuck in a part of

the search space with no solutions
I for unsatisfiable instances focusing on one part might miss

short proofs
⇒ restart the solver once the number of conflicts has reached a

given limit

I Avoid to run into the same dead end
I by randomization (either on the decision variable or its phase)
I and/or just keep all the learned clauses

I For completeness the limit must be increased dynamically
I arithmetically, geometrically, Luby, Inner/Outer, Glucose restart

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 34/127

Reducing Learnt Clauses

I cdcl sat solvers learn clauses at each conflict

I Keeping all these clauses can slow down the BCP process

I “Useless” learnt clauses are periodically deleted
(t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

I Deleting too many clauses makes the learning process useless

I However, identifying whether a clause will be useful in the
future is a hard task!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 35/127

Reducing Learnt Clauses

I cdcl sat solvers learn clauses at each conflict

I Keeping all these clauses can slow down the BCP process

I “Useless” learnt clauses are periodically deleted
(t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αn

αk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

I Deleting too many clauses makes the learning process useless

I However, identifying whether a clause will be useful in the
future is a hard task!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 35/127

Reducing Learnt Clauses

I cdcl sat solvers learn clauses at each conflict

I Keeping all these clauses can slow down the BCP process

I “Useless” learnt clauses are periodically deleted
(t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αn

αk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn α3. α3 α4

I Deleting too many clauses makes the learning process useless

I However, identifying whether a clause will be useful in the
future is a hard task!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 35/127

Reducing Learnt Clauses

I cdcl sat solvers learn clauses at each conflict

I Keeping all these clauses can slow down the BCP process

I “Useless” learnt clauses are periodically deleted
(t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn α3. α3 α4

I Deleting too many clauses makes the learning process useless

I However, identifying whether a clause will be useful in the
future is a hard task!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 35/127

Reducing Learnt Clauses

I cdcl sat solvers learn clauses at each conflict

I Keeping all these clauses can slow down the BCP process

I “Useless” learnt clauses are periodically deleted
(t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn

I Deleting too many clauses makes the learning process useless

I However, identifying whether a clause will be useful in the
future is a hard task!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 35/127

Reducing Learnt Clauses

I cdcl sat solvers learn clauses at each conflict

I Keeping all these clauses can slow down the BCP process

I “Useless” learnt clauses are periodically deleted
(t0, t1 . . . tk , . . .)

α1 α2 α3 α4 α5 α3. αk αnαk α5 α2 α1 αn α3. α3 α4αk α5 α2 α1 αn α3. α3 α4

αk α5 α2 α1 αn

I Deleting too many clauses makes the learning process useless

I However, identifying whether a clause will be useful in the
future is a hard task!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 35/127

Estimating the Clauses Utility

I The vsids measure
I Keeping clauses that are often – and recently – used in the

conflict analysis process
I Dynamic measure
I A clause useful in the past will be useful again in the future!

I The lbd measure
I Gives the number of decision-levels in the learnt clause
I Static measure
I Keeping clauses with a small lbd

I The psm measure
I Gives the number of literals assigned to false in the

interpretation handled by Progress Saving
I Static measure
I Keeping clauses with a small psm

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 36/127

Estimating the Clauses Utility

I The vsids measure
I Keeping clauses that are often – and recently – used in the

conflict analysis process
I Dynamic measure
I A clause useful in the past will be useful again in the future!

I The lbd measure
I Gives the number of decision-levels in the learnt clause
I Static measure
I Keeping clauses with a small lbd

I The psm measure
I Gives the number of literals assigned to false in the

interpretation handled by Progress Saving
I Static measure
I Keeping clauses with a small psm

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 36/127

Estimating the Clauses Utility

I The vsids measure
I Keeping clauses that are often – and recently – used in the

conflict analysis process
I Dynamic measure
I A clause useful in the past will be useful again in the future!

I The lbd measure
I Gives the number of decision-levels in the learnt clause
I Static measure
I Keeping clauses with a small lbd

I The psm measure
I Gives the number of literals assigned to false in the

interpretation handled by Progress Saving
I Static measure
I Keeping clauses with a small psm

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 36/127

cdcl algorithm

Input: a CNFformula Σ
Output: sat or unsat
∆ = ∅ // learnt clauses database1

while (true) do2

if (!propagate()) then3

if ((c = analyzeConflict()) == ∅) then return unsat ;4

∆ = ∆ ∪ {c};5

if (timeToRestart() then backtrack to level 0;6

else7

backtrack to the assertion level of c ;8

else9

` = decide();10

if (` == null) then return sat ;11

assert ` in a new decision level;12

if (timeToReduce()) then clean(∆);13

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 37/127

cdcl algorithm

Input: a CNFformula Σ
Output: sat or unsat
∆ = ∅ // learnt clauses database1

while (true) do2

if (!propagate()) then3

if ((c = analyzeConflict()) == ∅) then return unsat ;4

∆ = ∆ ∪ {c};5

if (timeToRestart() then backtrack to level 0;6

else7

backtrack to the assertion level of c ;8

else9

` = decide();10

if (` == null) then return sat ;11

assert ` in a new decision level;12

if (timeToReduce()) then clean(∆);13

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 37/127

About the Performance of sat Solvers

I Since 2001

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 38/127

About the Performance of sat Solvers

I cdcl sat solvers are not efficient on all families

0

90

180

0

75

150

0

150

300

sat+uns cdcl

sat+uns rl

Application(292) Crafted(281) Random(570)

65 + 99

8 + 0

81 + 41

68 + 0

2 + 0

294 + 0

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 38/127

About the Performance of sat Solvers

I cdcl sat solvers use several constants impacting their
efficiency

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 38/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation
Introduction
MODS

DT

FBDD

decision-DNNF

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 39/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation
Introduction
MODS

DT

FBDD

decision-DNNF

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 40/127

Motivations

I sat is NP-complete ⇒ in practice no guarantee to solve the
instance within a short delay

I Compile the instance into a representation from a language
L for which satisfiabily and more difficult issues (e.g. model
counting) are easy

I Useful when the compilation effort can be balanced by
considering sufficiently many queries sharing the same fixed
part (pieces of information that are compiled)

I Which L to choose?
I Use the knowledge compilation map!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 41/127

KC for Boolean Functions: Queries

Decision or functions problems / properties of languages

I CO (consistency)

I CE (clause entailment: implicates)

I VA (validity)

I EQ (equivalence)

I SE (sentential entailment)

I IM (implicants)

I CT (model counting)

I ME (model enumeration)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 42/127

KC for Boolean Functions: Queries

Decision or functions problems / properties of languages

I CO (consistency)

I CE (clause entailment: implicates)

I VA (validity)

I EQ (equivalence)

I SE (sentential entailment)

I IM (implicants)

I CT (model counting)

I ME (model enumeration)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 42/127

KC for Boolean Functions: Transformations

Function problems / properties of languages

I CD (conditioning)

I ∧ C (∧BC) (closure under ∧)

I ∨C (∨BC) (closure under ∨)

I ¬C (closure under ¬)

I FO (SFO) (forgetting)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 43/127

KC for Boolean Functions: Transformations

Function problems / properties of languages

I CD (conditioning)

I ∧C (∧BC) (closure under ∧)

I ∨C (∨BC) (closure under ∨)

I ¬C (closure under ¬)

I FO (SFO) (forgetting)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 43/127

The KC Map for Circ

I
√

means that a polynomial-time algorithm exists for
answering this query/making this transformation

I ◦ means that a polynomial-time algorithm does not exist for
answering this query/making this transformation, unless
P 6= NP

L CO VA CE IM EQ SE CT ME

Circ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table : Queries

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

Circ
√

◦
√ √ √ √ √ √

Table : Transformations

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 44/127

Fragment of the KC Map: Queries

L CO VA CE IM EQ SE CT ME

Circ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CNF ◦

√
◦

√
◦ ◦ ◦ ◦

DNF
√

◦
√

◦ ◦ ◦ ◦
√

d-DNNF
√ √ √ √

? ◦
√ √

Table : Queries

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 45/127

Fragment of the KC Map: Transformations

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

Circ
√

◦
√ √ √ √ √ √

CNF
√

◦
√ √ √

◦
√

◦
DNF

√ √ √
◦

√ √ √
◦

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

Table : Transformations

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 46/127

Succinctness

Succinctness captures the ability of a language to represent
information using little space

I ≤s is polynomial-space translatability

I L1 is at least as succinct as L2, denoted L1 ≤s L2, iff there
exists a polynomial p such that for every formula α ∈ L2,
there exists an equivalent formula β ∈ L1 where |β| ≤ p(|α|)

I ≤s is a pre-order over the subsets of Circ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 47/127

Succinctness Picture for some Languages

Circ

CNFDNFd-DNNF

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 48/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation
Introduction
MODS

DT

FBDD

decision-DNNF

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 49/127

Enumerate all solutions using a sat solver (MODS)

I A very simple way to compute the number of models of a
propositional formula is to incrementally compute each of
them

I To do so, we can easily use a sat solver

solve(Σ,¬∆)Σ,∆

SAT?•

∆← ∆ ∪ {δ}

no

yes(δ)

I With ∆ initially set to ∅
Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 50/127

KC for DT: queries

L CO VA CE IM EQ SE CT ME

Circ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CNF ◦

√
◦

√
◦ ◦ ◦ ◦

DNF
√

◦
√

◦ ◦ ◦ ◦
√

d-DNNF
√ √ √ √

? ◦
√ √

MODS
√ √ √ √ √ √ √ √

Table : Queries

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 51/127

KC for DT: transformations

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

Circ
√

◦
√ √ √ √ √ √

CNF
√

◦
√ √ √

◦
√

◦
DNF

√ √ √
◦

√ √ √
◦

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

MODS
√

◦
√

◦
√

◦
√

◦

Table : Transformations

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 52/127

Succinctness

I The size of the representation is given by the number of
models of the formula

Circ

CNFDNFd-DNNF

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 53/127

Succinctness

I The size of the representation is given by the number of
models of the formula

Circ

CNFDNFd-DNNF

MODS

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 53/127

Is MODS a Good KC Language?

I Can I compile efficiently the following formula into MODS?

Σ =
n∨

i=1

xi

I No!

I Σ has 2n − 1 models

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 54/127

Is MODS a Good KC Language?

I Can I compile efficiently the following formula into MODS?

Σ =
n∨

i=1

xi

I No!

I Σ has 2n − 1 models

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 54/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation
Introduction
MODS

DT

FBDD

decision-DNNF

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 55/127

Taking Advantage of the Trace of the Solver

I When a sat solver is used to solve a CNF instance Σ, it
explores the search space of all interpretations until a model is
found, if any

I The same search space needs to be considered for compiling
Σ, except that the process should not stop when a model is
found

I Consequently, we can take advantage of the trace of the
solver for generating a compiled form

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 56/127

Decision Tree (DT)

I Shannon Expansion: Σ ≡ (x ∧ Σ|x) ∨ (¬x ∧ Σ|¬x)

∨

∧ ∧

x Σ|x ¬x Σ|¬x

x

Σ|x←1 Σ|x←0

I DT is complete but is not succinct

I A decision tree for Σ can be seen as the joined representation
of a deterministic DNF of Σ and a deterministic DNF of ¬Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 57/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

q ∨ ¬r ∨ (¬r ∧ q) ¬r ∨ (r ∧ q)

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

rq ∨ ¬r ∨ (¬r ∧ q) ¬r ∨ (r ∧ q)

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

rq ∨ ¬r ∨ (¬r ∧ q) ¬r ∨ (r ∧ q)

> q

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

rq ∨ ¬r ∨ (¬r ∧ q) ¬r ∨ (r ∧ q)

> qq q

⊥ >

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

rq ∨ ¬r ∨ (¬r ∧ q) q ¬r ∨ (r ∧ q)

> qq q

⊥ >

¬r ¬r ∨ rr r

⊥ > > >

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

Decision Tree (DT): an Example

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

r q

> q

⊥ >

r r

⊥ > > >

I The size of the representation is the number of edges of the
graph: |Σ| = 25

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 58/127

KC for DT: Queries

L CO VA CE IM EQ SE CT ME

Circ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CNF ◦

√
◦

√
◦ ◦ ◦ ◦

DNF
√

◦
√

◦ ◦ ◦ ◦
√

d-DNNF
√ √ √ √

? ◦
√ √

MODS
√ √ √ √ √ √ √ √

DT
√ √ √ √ √ √ √ √

Table : Queries

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 59/127

KC for DT: Transformations

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

Circ
√

◦
√ √ √ √ √ √

CNF
√

◦
√ √ √

◦
√

◦
DNF

√ √ √
◦

√ √ √
◦

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

MODS
√

◦
√

◦
√

◦
√

◦
DT

√
◦

√
◦

√
◦

√ √

Table : Transformations

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 60/127

Succinctness

Circ

CNFDNFd-DNNF

MODS

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 61/127

Succinctness

Circ

CNFDNFd-DNNF

MODSDT

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 61/127

Is DT a Good KC Language?

I How to represent the following Boolean function into DT?

n∑
i=1

xi ≡ 0(mod 2)

I All the variables must be assigned to be able to decide
whether the function evaluates to true

I So all the interpretations must be considered

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 62/127

Is DT a Good KC Language?

I How to represent the following Boolean function into DT?

n∑
i=1

xi ≡ 0(mod 2)

I All the variables must be assigned to be able to decide
whether the function evaluates to true

I So all the interpretations must be considered

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 62/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation
Introduction
MODS

DT

FBDD

decision-DNNF

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 63/127

Caching

I Caching = sub-circuit sharing

I Let us consider again the previous example:

n∑
i=1

xi ≡ 0(mod2)

x1

x2 x2

∑n
i=3 xi ≡ 0(mod2)

∑n
i=3 xi ≡ 1(mod2)

∑n
i=3 xi ≡ 1(mod2)

∑n
i=3 xi ≡ 0(mod2)

I May the parity function be efficiently compiled using caching?

Yes!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 64/127

Caching

I Caching = sub-circuit sharing

I Let us consider again the previous example:

n∑
i=1

xi ≡ 0(mod2)

x1

x2 x2

∑n
i=3 xi ≡ 0(mod2)

∑n
i=3 xi ≡ 1(mod2)

∑n
i=3 xi ≡ 1(mod2)

∑n
i=3 xi ≡ 0(mod2)

I May the parity function be efficiently compiled using caching?

Yes!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 64/127

Caching

I Caching = sub-circuit sharing

I Let us consider again the previous example:

n∑
i=1

xi ≡ 0(mod2)

x1

x2 x2

∑n
i=3 xi ≡ 0(mod2)

∑n
i=3 xi ≡ 1(mod2)

∑n
i=3 xi ≡ 1(mod2)

∑n
i=3 xi ≡ 0(mod2)

I May the parity function be efficiently compiled using caching?
Yes!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 64/127

Free Binary Decision Diagram (FBDD)

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 65/127

Free Binary Decision Diagram (FBDD)

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

q q

r > r r

> ⊥ ⊥ > > >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 65/127

Free Binary Decision Diagram (FBDD)

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

q q

r > r r

> ⊥ ⊥ > >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 65/127

Free Binary Decision Diagram (FBDD)

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

q q

r > r >

> ⊥ ⊥ >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 65/127

Free Binary Decision Diagram (FBDD)

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

p

q

r >

⊥ >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 65/127

Free Binary Decision Diagram (FBDD)

I Σ = (q ∧ ¬p) ∨ ¬r ∨ (((¬p ∧ ¬r) ∨ (p ∧ r)) ∧ q)

q

r

⊥ >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 65/127

KC for DT: Queries

L CO VA CE IM EQ SE CT ME

Circ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CNF ◦

√
◦

√
◦ ◦ ◦ ◦

DNF
√

◦
√

◦ ◦ ◦ ◦
√

d-DNNF
√ √ √ √

? ◦
√ √

MODS
√ √ √ √ √ √ √ √

DT
√ √ √ √ √ √ √ √

FBDD
√ √ √ √

? ◦
√ √

Table : Queries

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 66/127

KC for DT: Transformations

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

Circ
√

◦
√ √ √ √ √ √

CNF
√

◦
√ √ √

◦
√

◦
DNF

√ √ √
◦

√ √ √
◦

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

MODS
√

◦
√

◦
√

◦
√

◦
DT

√
◦

√
◦

√
◦

√ √

FBDD
√

◦ ◦ ◦ ◦ ◦
√ √

Table : Transformations

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 67/127

Succinctness

Circ

CNFDNFd-DNNF

DT

MODS

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 68/127

Succinctness

Circ

CNFDNFd-DNNF

DT

MODS

FBDD

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 68/127

Can we Turn a DT Compiler into an FBDD Compiler?

I Compiling into DT and then searching for identical sub-circuits
to reduce it is impractical!

I Instead one stores in a map pairs 〈CNF, FBDD〉 consisting of all
the CNF considered so far in the search, associated with their
corresponding FBDD representation

I At each new decision node, the map is looked up to determine
whether the current CNF has already been considered

I If so, one does not need to compile it again!

I Is it practical to test the equivalence with the CNF formulas
present in this map?

I No! coNP-complete
I In practice, we replace equivalence by a stronger, yet more easy

to decide, relation (identity up to the ordering of the clauses)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 69/127

Can we Turn a DT Compiler into an FBDD Compiler?

I Compiling into DT and then searching for identical sub-circuits
to reduce it is impractical!

I Instead one stores in a map pairs 〈CNF, FBDD〉 consisting of all
the CNF considered so far in the search, associated with their
corresponding FBDD representation

I At each new decision node, the map is looked up to determine
whether the current CNF has already been considered

I If so, one does not need to compile it again!

I Is it practical to test the equivalence with the CNF formulas
present in this map?

I No! coNP-complete

I In practice, we replace equivalence by a stronger, yet more easy
to decide, relation (identity up to the ordering of the clauses)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 69/127

Can we Turn a DT Compiler into an FBDD Compiler?

I Compiling into DT and then searching for identical sub-circuits
to reduce it is impractical!

I Instead one stores in a map pairs 〈CNF, FBDD〉 consisting of all
the CNF considered so far in the search, associated with their
corresponding FBDD representation

I At each new decision node, the map is looked up to determine
whether the current CNF has already been considered

I If so, one does not need to compile it again!

I Is it practical to test the equivalence with the CNF formulas
present in this map?

I No! coNP-complete
I In practice, we replace equivalence by a stronger, yet more easy

to decide, relation (identity up to the ordering of the clauses)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 69/127

Is FBDD a Good KC Language?

I How to compile efficiently the following formula into an FBDD

representation?
n∧

i=1

x i
1 ∨ x i

2 ∨ . . . ∨ x i
n

I Each clause must be compiled separately

I Branching heuristics for sat are not suited to this objective!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 70/127

Is FBDD a Good KC Language?

I How to compile efficiently the following formula into an FBDD

representation?
n∧

i=1

x i
1 ∨ x i

2 ∨ . . . ∨ x i
n

I Each clause must be compiled separately

I Branching heuristics for sat are not suited to this objective!

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 70/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation
Introduction
MODS

DT

FBDD

decision-DNNF

Heuristics for Decomposition

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 71/127

Decomposition

I Let consider again the previous formula:

n∧
i=1

x i
1 ∨ x i

2 ∨ . . . ∨ x i
n

I We can observe that the clauses do not share variables
I Can we separately compile the clauses and then aggregate

them using an and node while offering model counting?

I Yes!
∧

x1
1 ∨ x1

2 ∨ . . . ∨ x1
n x2

1 ∨ x2
2 ∨ . . . ∨ x2

n xn
1 ∨ xn

2 ∨ . . . ∨ xn
n

. . .

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 72/127

Decomposition

I Let consider again the previous formula:

n∧
i=1

x i
1 ∨ x i

2 ∨ . . . ∨ x i
n

I We can observe that the clauses do not share variables
I Can we separately compile the clauses and then aggregate

them using an and node while offering model counting?
I Yes!

∧

x1
1 ∨ x1

2 ∨ . . . ∨ x1
n x2

1 ∨ x2
2 ∨ . . . ∨ x2

n xn
1 ∨ xn

2 ∨ . . . ∨ xn
n

. . .

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 72/127

Decomposition

I Let consider again the previous formula:

n∧
i=1

x i
1 ∨ x i

2 ∨ . . . ∨ x i
n

I We can observe that the clauses do not share variables
I Can we separately compile the clauses and then aggregate

them using an and node while offering model counting?
I Yes!

∧

x1
1 ∨ x1

2 ∨ . . . ∨ x1
n x2

1 ∨ x2
2 ∨ . . . ∨ x2

n xn
1 ∨ xn

2 ∨ . . . ∨ xn
n

. . .

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 72/127

Decision-d-NNF(decision-DNNF)

I Σ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ t ∨ u)

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 73/127

Decision-d-NNF(decision-DNNF)

I Σ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ t ∨ u)

y

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 73/127

Decision-d-NNF(decision-DNNF)

I Σ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ t ∨ u)

y

(x ∨ z) ∧ (x ∨ z) ∧ (t ∨ u) >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 73/127

Decision-d-NNF(decision-DNNF)

I Σ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ t ∨ u)

y

∧

(x ∨ z) ∧ (x ∨ z) (t ∨ u)

>

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 73/127

Decision-d-NNF(decision-DNNF)

I Σ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ t ∨ u)

y

∧

(t ∨ u)

>

x

z z

⊥>

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 73/127

Decision-d-NNF(decision-DNNF)

I Σ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ t ∨ u)

y

∧ >

x

z z

⊥>

t

u

⊥>

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 73/127

KC for DT: queries

L CO VA CE IM EQ SE CT ME

Circ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CNF ◦

√
◦

√
◦ ◦ ◦ ◦

DNF
√

◦
√

◦ ◦ ◦ ◦
√

d-DNNF
√ √ √ √

? ◦
√ √

MODS
√ √ √ √ √ √ √ √

DT
√ √ √ √ √ √ √ √

FBDD
√ √ √ √

? ◦
√ √

decision-DNNF
√ √ √ √

? ◦
√ √

Table : Queries

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 74/127

KC for DT: transformations

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

Circ
√

◦
√ √ √ √ √ √

CNF
√

◦
√ √ √

◦
√

◦
DNF

√ √ √
◦

√ √ √
◦

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

MODS
√

◦
√

◦
√

◦
√

◦
DT

√
◦

√
◦

√
◦

√ √

FBDD
√

◦ ◦ ◦ ◦ ◦
√ √

decision-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

Table : Transformations

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 75/127

Succinctness

Circ

CNFDNFd-DNNF

FBDD

MODS

DT

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 76/127

Succinctness

Circ

CNFDNFd-DNNF

FBDD

MODS

DT

decision-DNNF

Figure : Succinctness : L1 → L2 means that L1 <s L2

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 76/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 77/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 78/127

A Key Issue: Decomposition

I The Cartesian approach to problem solving: decomposing a
problem into independent subproblems

I Need to design branching heuristics favoring the
decomposition of the current CNF formula Σ (i.e., at the
current decision node of the search tree) into (at least two)
independent CNF formulae Σ1, Σ2

I Independence means that no variable is shared between Σ1

and Σ2

I If a decomposition of Σ into Σ1 ∧ Σ2 is found, a
decomposable ∧-node can be generated in the decision-DNNF
representation of Σ one wants to build up

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 79/127

Decompositions

Several types of decomposition can be envisioned

I semantical decomposition: Σ1 and Σ2 are any CNF such that
Σ ≡ (Σ1 ∧ Σ2)

I syntactic decomposition: Σ1 and Σ2 are subformulae of Σ
such that Σ ≡ (Σ1 ∧ Σ2)

Every syntactic decomposition of Σ into Σ1 and Σ2 also is a
semantical one, but not vice-versa

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 80/127

Decompositions: Example

Σ = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c̄) ∧ (c ∨ d)

I semantical decomposition: Σ is equivalent to

(a ∨ b)︸ ︷︷ ︸
Σ1

∧ (c ∨ d)︸ ︷︷ ︸
Σ2

I syntactic decomposition: there is no syntactic decomposition
of Σ, but the semantical decomposition above is a syntactic
decomposition of the CNF Σ′ = (a ∨ b) ∧ (c ∨ d) which is
equivalent to Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 81/127

Semantical Decomposition

I Guessing Σ1, Σ2 and checking that Σ ≡ (Σ1 ∧ Σ2) would be
prohibitive!

I Fortunately, guessing subsets of variables of Σ is enough

I Σ1 ∧Σ2 is a (nontrivial) semantical decomposition of Σ if and
only if there exists an (ordered) bipartition (X1,X2) of Var(Σ)
such that Var(Σ1) ⊆ X1, Var(Σ2) ⊆ X2,

Σ1 ≡ ∃X2.Σ,Σ2 ≡ ∃X1.Σ, and Σ1 ∧ Σ2 |= Σ

I Such a bipartition (X1,X2) induces a semantical
decomposition of Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 82/127

Back to the Example

Σ = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c̄) ∧ (c ∨ d)

I (X1,X2) with X1 = {a, b} and X2 = {c , d} induces a
semantical decomposition of Σ

I ∃X1.Σ ≡ c ∨ d

I ∃X2.Σ ≡ a ∨ b

I (a ∨ b) ∧ (c ∨ d) |= Σ

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 83/127

Semantical Decomposition is Too Expensive

I In order to generate a bipartition (X1,X2) inducing a
semantical decomposition of Σ, one must be able to decide
for each x ∈ Var(Σ) whether x should be put in X1 or in X2

I x and y must be put in the same set whenever there exists a
prime implicate of Σ which contains them both (as variables)

I Determining whether Σ has a prime implicate containing both
x and y is Σp

2-complete

I Calling a Σp
2 oracle at every decision node of the search tree is

too much demanding in practice

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 84/127

Semantical Decomposition is Too Expensive

I Once a semantical decomposition (X1,X2) has been found, we
are not done: variable elimination must be applied to turn
each of ∃X1.Σ and ∃X2.Σ into equivalent CNF formulae

I Variable elimination is expensive as well in general

⇒ Look for syntactic decompositions, only

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 85/127

Syntactic Decomposition is Easy to Find

I Use BFS of the primal graph of the current CNF Σ to
determine whether it has several (disjoint) connected
components (feasible in linear time in the size of Σ)

I Σ has a syntactic decomposition if and only if the number of
connected components is at least 2

I Back to the example: Σ′ = (a ∨ b) ∧ (c ∨ d)

a b c d

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 86/127

Generating a Syntactic Decomposition

I What if Σ has no syntactic decomposition?

I Assigning some variables X1 of Σ to create such a
decomposition

I Let Σ be a CNF. A syntactic decomposition scheme of Σ is a
3-splitting (X1,X2,X3) of Var(Σ) such that for every
canonical term γ1 over X1, the CNF formula Σ | γ1 has a
syntactic decomposition Σγ1

2 ∧ Σγ1
3 , where Var(Σγ1

2) ⊆ X2 and
Var(Σγ1

3) ⊆ X3

I N.B. 3-splitting = 3-partition except that the sets can be
empty

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 87/127

From a Syntactic Decomposition Scheme to a
decision-DNNF Representation

If (X1,X2,X3) is a syntactic decomposition scheme of Σ, then∨
γ1 canonical term overX1

(γ1 ∧ decision-DNNF(Σγ1
2) ∧ decision − DNNF(Σγ1

3))

is a d-DNNF of Σ which corresponds to a decision-DNNF of it
(viewing each γ as a path of a decision tree), noted

ite(γ1 canonical term over X1, decision-DNNF(Σγ1
2)∧decision-DNNF(Σγ1

3))

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 88/127

Back to the Example

Σ = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c̄) ∧ (c ∨ d)

I (X1 = {b, c},X2 = {a},X3 = {d}) is a syntactic
decomposition scheme of Σ

I Σ | (b̄ ∧ c̄) = a︸︷︷︸
Σ

(b̄∧c̄)
2

∧ d︸︷︷︸
Σ

(b̄∧c̄)
3)

I Σ | (b̄ ∧ c) = a︸︷︷︸
Σ

(b̄∧c)
2

∧ >︸︷︷︸
Σ

(b̄∧c)
3

I Σ | (b ∧ c̄) = >︸︷︷︸
Σ

(b∧c̄)
2

∧ d︸︷︷︸
Σ

(b∧c̄)
3

I Σ | (b ∧ c) = >︸︷︷︸
Σ

(b∧c)
2

∧ >︸︷︷︸
Σ

(b∧c)
3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 89/127

A Decision-DNNF Representation of Σ

A decision-DNNF

ite(γ1 canonical term over X1, decision-DNNF(Σγ1
2)∧decision-DNNF(Σγ1

3))

associated with the syntactic decomposition scheme of Σ given by

(X1 = {b, c},X2 = {a},X3 = {d})

is

b

c c

∧ a d >

a d

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 90/127

Another Syntactic Decomposition Scheme

Σ = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c̄) ∧ (c ∨ d)

I (X1 = {c},X2 = {a, b},X3 = {d}) is a syntactic
decomposition scheme of Σ

I Σ | c̄ = (a ∨ b)︸ ︷︷ ︸
Σc̄

2

∧ d︸︷︷︸
Σc̄

3

I Σ | c = (a ∨ b)︸ ︷︷ ︸
Σc

2

∧ >︸︷︷︸
Σc

3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 91/127

Another Decision-DNNF Representation of Σ

A decision-DNNF

ite(γ1 canonical term over X1, decision-DNNF(Σγ1
2)∧decision-DNNF(Σγ1

3))

associated with the syntactic decomposition scheme of Σ given by

(X1 = {c},X2 = {a, b},X3 = {d})

is

c

∧

ad

b

⊥ >

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 92/127

Targeting ”Small-sized” Decision-DNNF Representations

I Every CNF Σ has a syntactic decomposition scheme:
(Var(Σ), ∅, ∅)

I This one leads to a compiled representation of Σ as a
decision-DNNF which boils down to a decision tree or to an
FBDD representation if caching is exploited!

I Better syntactic decomposition schemes (i.e., with
decomposable ∧-nodes, leading to ”smaller” decision-DNNF
compiled forms) are sought for

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 93/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 94/127

The Power of Decomposition

Consider a syntactic decomposition scheme of Σ: (X1,X2,X3) such
that #(Xi) = xi (i ∈ {1, . . . , 3})

I Suppose that every decision-DNNF representation of Σ has a
size which is a fraction k (0 < k ≤ 1) of the search space of all
interpretations explored for generating it (which implies that
the corresponding compilation time will be at least as high)

I The size of a decision-DNNF representation of Σ will be
2x1 × (k × 2x2 + k × 2x3)

I 2x1 × (k × 2x2 + k × 2x3) < k × 2x1+x2+x3 unless x2 ≤ 2 and
x3 ≤ 2

⇒ This explains why introducing decomposable ∧-nodes (and
not only decision nodes) in the compiled form is useful

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 95/127

Efficient Syntactic Decomposition Schemes

I The syntactic decomposition scheme (X1,X2,X3) of Σ leads
to a decision-DNNF of Σ which is as small as

I x1 is small
I x2 is close to x3: x∗

2 = b x2+x3

2 c and x∗
3 = d x2+x3

2 e minimize the
value of 2x2 + 2x3 when the sum x2 + x3 is fixed

I An efficient syntactic decomposition scheme (X1,X2,X3) of Σ
is one minimizing the two criteria (size of the cut set, balance
of the decomposition) when possible

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 96/127

The Two Criteria are Antagonistic!

◦ • ◦

◦

◦

◦ ◦ ◦

◦ ◦ ◦

•

•

◦ ◦ ◦

⇒ Trade-offs must be looked for! One typically relaxes the second
optimality criterion by asking only that the two disjoint
components forming the decomposition have approximately the
same cardinal

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 97/127

Complexity of Finding out ”Good” Syntactic
Decomposition Schemes

I Finding a minimal cut X1 of the primal graph of Σ can be
achieved in polynomial time (e.g. using Stoer-Wagner
algorithm which is in time O(|V ||E |+ |V |2log 2|V |))

I Adding a balance constraint

|#(X2)−#(X3)| ≤ α

where α is a constant, renders the problem NP-hard

⇒ How to maintain small enough in practice the complexity of
finding out ”good” syntactic decomposition schemes?

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 98/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 99/127

Several Strategies can be Considered

1. Using state-of-the-art branching heuristics for sat and
detecting decompositions in a lazy fashion

2. Relaxing the optimality criteria for syntactic decompositions
scheme (use local search techniques for graph partitioning)

3. Avoiding to compute a syntactic decomposition scheme at
each decision node

a. Prior to the compilation of Σ, compute a decomposition tree
(dtree) for guiding the decompositions

b. Use a graph partitioner sparingly during the compilation
process on a simplified graph, taking advantage of
in-processing techniques (especially literal equivalence) on Σ

I Compilers:
I The Dsharp compiler is based on 1.
I The C2D compiler is based on 2., and 3.a.
I The D4 compiler is based on 2., and 3.b.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 100/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 101/127

The VSADS Branching Heuristics

I In the sat case and in the compilation case, the smaller the
search tree the better

I To detect conflicts as soon as possible, sat solvers take
advantage of look-back branching heuristics

I Hence it makes sense to use such heuristics in the compilation
case

I VSADS is a look-back branching heuristics that is based on
VSIDS and the number of occurrences of the variables in the
clauses

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 102/127

A Pseudo-Code of Dsharp

Algorithm 3: Dsharp(Σ)

input : a CNF formula Σ
output: the root node N of a decision-DNNF representation of Σ

S← solve(Σ);1

if S = {∅} then return leaf(⊥);2

if Var(Σ) = ∅ then return aNode(S, [leaf(>)]);3

if cache(Σ) 6= nil then return aNode(S, [cache(Σ)]);4

comps ← connectedComponents(Σ);5

LNd ← [];6

foreach c ∈ comps do7

v ← VSADS(Var(c));8

Nd ← ite(v , Dsharp(c |¬v), Dsharp(c |v));9

LNd ← add(Nd , LNd);10

N∧ ← aNode(S , LNd);11

cache(Σ)← N∧;12

return N∧13

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 103/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 104/127

Decomposition Trees

A decomposition tree (dtree) for a CNF Σ is a full binary tree, with
leaves in one-to-one correspondance with the clauses of Σ

Σ = (a ∨ b ∨ c)︸ ︷︷ ︸
δ1

∧ (a ∨ b ∨ c̄)︸ ︷︷ ︸
δ2

∧ (c ∨ d)︸ ︷︷ ︸
δ3

δ1 δ2 δ3

◦

◦

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 105/127

Cutsets

Each internal node of a dtree is associated with a cutset

Σ = (a ∨ b ∨ c)︸ ︷︷ ︸
δ1

∧ (a ∨ b ∨ c̄)︸ ︷︷ ︸
δ2

∧ (c ∨ d)︸ ︷︷ ︸
δ3

For every internal node N, let N l and
N r its two children

I Var(N) = Var(N l) ∪ Var(N r)

I Cutset(N) = (Var(N l) ∩
Var(N r)) \ AncCutset(N)

I AncCutset(N) =⋃
N′ ancestor of N Cutset(N ′)

δ1 δ2 δ3

{a, b}

{c}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 106/127

Decomposition Trees

Dtrees can be computed in various ways:

I in a bottom-up way, starting with an elimination ordering
(i.e., a strict, total ordering < over Var(Σ))

I several heuristics exist for determining an elimination ordering
leading to ”good” decompositions

I min-degree: order the variables of Σ in an ascending way w.r.t.
their incidence degree in the primal graph of Σ

I min-fill: order the variables of Σ in an ascending way w.r.t.
their number of neighbors which are not pairwise connected in
the primal graph of Σ

I in a top-down way, using a graph partitioner

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 107/127

Back to the Example: Heuristics

Σ = (a ∨ b ∨ c)︸ ︷︷ ︸
δ1

∧ (a ∨ b ∨ c̄)︸ ︷︷ ︸
δ2

∧ (c ∨ d)︸ ︷︷ ︸
δ3

a

b

c d

Min-degree and min-fill leads to the same ordering for this example:

d < a < b < c

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 108/127

In a Bottom-Up Way: A Pseudo-Code of dtree-bu

Algorithm 4: dtree-bu(Σ, <)

input : a CNF formula Σ and an elimination ordering < over
Var(Σ)

output: a dtree dt for Σ

F← {δi ∈ Σ};1

Var← Var(Σ);2

while Var 6= ∅ do3

v ← head(Var, <);
gather every dtree of F with a leaf containing v into a single
dtree;
remove v from Var

Gather every dtree of F into a single dtree dt;4

return dt5

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 109/127

Back to the Example

Σ = (a ∨ b ∨ c)︸ ︷︷ ︸
δ1

∧ (a ∨ b ∨ c̄)︸ ︷︷ ︸
δ2

∧ (c ∨ d)︸ ︷︷ ︸
δ3

d < a < b < c

δ1 δ2 δ3

start

δ1 δ2 δ3

processing d

δ1 δ2 δ3

◦

processing a

δ1 δ2 δ3

◦

processing b

δ1 δ2 δ3

◦

◦

processing c

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 110/127

In a Top-Down Way

One exploits a graph partitioner for finding a cutset in the dual
hypergraph of Σ (if possible, a cutset of ”small size” leading to a
balanced decomposition)

Σ = (a ∨ b ∨ c)︸ ︷︷ ︸
δ1

∧ (a ∨ b ∨ c̄)︸ ︷︷ ︸
δ2

∧ (c ∨ d)︸ ︷︷ ︸
δ3

δ1 δ2

δ3

a, b

c

d

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 111/127

In a Top-Down Way: A Pseudo-Code of dtree-td

Algorithm 5: dtree-td(Σ)

input : a CNF formula Σ
output: the root N of a dtree for Σ

if Σ has a decomposition Σ1 ∧ Σ2 then1

N ← node(∅, dtree-td(Σ1), dtree-td(Σ2))

else2

while there exist two distinct clauses connected by a hyperedge
in the dual hypergraph of Σ do

C ← HGP(Σ);
Σ1 ← one connected component of Σ simplified by
removing from its clauses all the variables from C ;
Σ2 ← the union of the other connected components of Σ
simplified by removing from its clauses all the variables
from C ;
N ← node(C , dtree-td(Σ1), dtree-td(Σ2));

return N3

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 112/127

Back to the Example

Σ = (a ∨ b ∨ c)︸ ︷︷ ︸
δ1

∧ (a ∨ b ∨ c̄)︸ ︷︷ ︸
δ2

∧ (c ∨ d)︸ ︷︷ ︸
δ3

δ1, δ2, δ3

start

δ1, δ2 δ3

{c}

C = {c}

δ1 δ2 δ3

{c}

{a, b}

C = {a, b}

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 113/127

A Pseudo-Code of C2D

Algorithm 6: C2D(Σ, N)

input : a CNF formula Σ and the root N of a dtree dt for Σ
output: the root M of a decision-DNNF representation of Σ

S← solve(Σ);1

if S = {∅} then return leaf(⊥);2

if Var(Σ) = ∅ then return aNode(S, [leaf(>)]);3

if cache(Σ) 6= nil then return aNode(S, [cache(Σ)]);4

if N reduces to a leaf node labelled by δ then5

return a decision-DNNF representation of δ

else
C ← label(N);
M ← ite(γ1 canonical term over C , C2D(Σ | γ1,N

2), C2D(Σ | γ1,N
3));

/* (C ,Var(N2),Var(N3)) is by construction a syntactic

decomposition scheme of Σ */

cache(Σ)← M;

return M6

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 114/127

Overview

sat Solving

From sat Solving to Top-Down Knowledge Compilation

Heuristics for Decomposition
Semantical vs. Syntactic Decompositions
The Power of Decomposition
Strategies for Finding Decompositions and Related Compilers

Lazy Decomposition: Dsharp
Global Decomposition: C2D
Local Decomposition: D4

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 115/127

Static vs. Dynamic Decomposition

I When a dtree is computed first for finding out the cutsets
leading to decompositions, the same cutsets are considered
whatever their ancestor cutsets (hence whatever the
assignments γ of their variables)

I The CNF formula conditioned by γ which results at the current
decision node of the search tree is not considered

δ1 δ2 δ3

{c}

{a, b}

{a, b} is considered as a cutset whatever c has been assigned to
true or to false

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 116/127

Static vs. Dynamic Decomposition

I Pros: No need to call a hypergraph partitioner for every
assignment γ of the variables from the ancestor cutset (this is
an expensive operation)

I Cons: Σ | γ may heavily vary depending on γ, so that better
syntactic decomposition schemes could be obtained if the
assignments themselves were taken into account

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 117/127

The Decision-DNNF Compiler D4

I D4: a Decision-DNNF compiler based on Dynamic Decomposition

I Input: a CNF formula Σ
I Output: a decision-DNNF representation equivalent to the input

I D4 is a top-down compiler which generates a Decision-DNNF
representation by following the trace of a sat solver

I D4 is based on the same ingredients as the previous compilers C2D

and Dsharp: disjoint component analysis, conflict analysis and
non-chronological backtracking, component caching

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 118/127

D4: What’s Up?

I The variable selection heuristics is dynamic like Dsharp (and unlike
C2D)

I It is based on a partitioning of the dual hypergraph of the input CNF
like C2D (and unlike Dsharp)

I Two new features:

I hypergraph partitioning (based on the PaToH partitioner) is
used sparingly and during the search for finding decompositions

I a set of simplification rules are also used to minimize the time
spent in the partitioning steps and to promote the quality of
the decompositions

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 119/127

A Pseudo-Code of D4

Algorithm 7: D4(Σ, LV)

input : a CNF formula Σ and a list of variables LV (empty at start)
output: the root node N of a decision-DNNF representation of Σ

S← solve(Σ);1

if S = {∅} then return leaf(⊥);2

if Var(Σ) = ∅ then return aNode(S, [leaf(>)]);3

if cache(Σ) 6= nil then return aNode(S, [cache(Σ)]);4

comps ← connectedComponents(Σ);5

LNd ← [];6

foreach c ∈ comps do7

LVc ← restrict(LV ,Var(c));8

if LVc = ∅ or #(Var(S) ∩ Var(c)) > 1
10 #(Var(c)) then9

LVc ← sort(HGP(c));

v ← head(LVc);10

LVc ← tail(LVc);11

Nd ← ite(v , D4(c|¬v , LVc), D4(c |v , LVc));12

LNd ← add(Nd , LNd);13

N∧ ← aNode(S , LNd);14

cache(Σ)← N∧;15

return N∧16

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 120/127

Improving the Hypergraph Partitioning Steps

I We avoid calling HGP at each recursion step or each time a decision
node must be generated

I We designed some specific rules which are used inside HGP and aim
at simplifying the hypergraph associated with the current formula
before calling PaToH on it

I The simplification achieved can also lead PaToH to find better
decompositions

I we exploit an algorithm for the detection of literal equivalences
based on BCP (more details on Wednesday!)

I we simplify the dual hypergraph of the resulting formula,
removing some useless nodes and hyperedges

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 121/127

Empirical Evaluation

I 703 CNF instances from the sat LIBrary

I 8 data sets: BN (Bayesian networks) (192), BMC (Bounded Model
Checking) (18), Circuit (41), Configuration (35), Handmade (58),
Planning (248), Random (104), Qif (7) (Quantitative Information
Flow analysis - security)

I Experiments conducted on Intel Xeon E5-2643 (3.30 GHz)
processors with 32 GiB RAM on Linux CentOS

I A time-out of 1h and a memory-out of 7.6 GiB has been considered
for each instance

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 122/127

Comparison with C2D (compilation times)

0.1

1

10

100

1000

0.1 1 10 100 1000

C
2

D

D4

Qif
Handmade

Planning
Circuit

Configuration
Random

BMC
BN

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 123/127

Comparison with C2D (sizes of the compiled forms)

1

10

100

1000

10000

100000

1 × 106

1 × 107

1 × 108

1 10 100 1000 10000 100000 1 × 106 1 × 107 1 × 108

C
2

D

D4

Qif
Handmade

Planning
Circuit

Configuration
Random

BMC
BN

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 124/127

D4 as a Model Counter

1

10

100

1000

200 250 300 350 400 450 500 550 600

ti
m
e
(i
n
se
co

n
d
s)

number of instances solved

D4
C2D

Dsharp
Cachet

sharpSAT

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 125/127

References (for further reading)

A. Darwiche. Decomposable negation normal form. Journal of the ACM,
48(4):608–647, 2001.

A. Darwiche. New advances in compiling cnf into decomposable negation
normal form. ECAI’04, pages 328–332, 2004.

J.-M. Lagniez, and P. Marquis. An Improved Decision-DNNF Compiler.
IJCAI’17, pages 667-673, 2017.

Research School on Knowledge Compilation, ENS Lyon, December 4th-8th, 2017 126/127

Top-Down Knowledge Compilation

Jean-Marie Lagniez & Pierre Marquis∗

CRIL, U. Artois & CNRS
Institut Universitaire de France∗

France

	sat Solving
	Introduction
	dp
	dpll
	Boolean Constraint Propagation (BCP)
	Heuristics
	cdcl

	From sat Solving to Top-Down Knowledge Compilation
	Introduction
	MODS
	DT
	FBDD
	decision-DNNF

	Heuristics for Decomposition
	Semantical vs. Syntactic Decompositions
	The Power of Decomposition
	Strategies for Finding Decompositions and Related Compilers

