A New Hypergraph Measure for #SAT

Florent Capelli CRIL, Université d'Artois

Dagstuhl Seminar 24421

October 17, 2024

Loosely based on Direct Access for Conjunctive Queries with Negation with Oliver Irwin, ICDT 24

Structural Tractability of #SAT

The #SAT problem

Given CNF F, return $\#F$, the number of satisfying assignments.

- #P-hard to solve.
- Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.
- NP-hard to (even badly) approximate (see [ApproxMC](https://github.com/meelgroup/approxmc) for practical work in this direction).

The #SAT problem

Given CNF F, return $\#F$, the number of satisfying assignments.

- #P-hard to solve.
- Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.
- NP-hard to (even badly) approximate (see [ApproxMC](https://github.com/meelgroup/approxmc) for practical work in this direction).

Same story as SAT: hard problem but useful in practice.

- Reasoning on propositionnal knowledge basis.
- Solve other counting problems using parcimonious reductions.

When can we solve #SAT more efficiently than bruteforce?

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions. If $X \cap Y = \emptyset$ and $F(X, z_1, z_2, Y) \equiv G(X, z_1, z_2) \land H(Y, z_1, z_2)$:

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions. If $X \cap Y = \emptyset$ and $F(X, z_1, z_2, Y) \equiv G(X, z_1, z_2) \land H(Y, z_1, z_2)$:

$$
\#F\!=\!\sum_{a,\,b\,\in\,\left\{ 0,\,1\right\} ^{2}}\#G\left[\,z_{1}=a,z_{2}=b\,\right]\cdot\#F
$$

 $H \, [\, z_1 = a, z_2 = b \,]$

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions. If $X \cap Y = \emptyset$ and $F(X, z_1, z_2, Y) \equiv G(X, z_1, z_2) \land H(Y, z_1, z_2)$:

$$
\#F = \sum_{a,b \,\in \,\left\{0,1\right\}^2} \#G\left[\,z_1=a,z_2=b\,\right]\cdot \#H\left[\,z_1=a,z_2=b\,\right]
$$

If we can recursively decompose the formula this way, we can count efficiently.

Structure of CNF formulas

$$
F = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_3 \vee x_4 \vee x_5) \wedge (x_1 \vee x_3 \vee x_5 \vee x_7)
$$

Primal graph

Incidence graph

$\quad ($ x_1 \lor $\neg x_5$ \lor $\neg x_6$ $)$ $\ \land$

Hypergraph

Structural Tractability

Theorem

If (primal / incidence) graph of F of size *n* has **treewidth** *k* then $#F$ can be computed in time $2^{O(k)} n$. [1]

Structural Tractability

Theorem

If (primal / incidence) graph of F of size *n* has **treewidth** *k* then $#F$ can be computed in time $2^{O(k)} n$. [1]

 $\#F[X]$

$$
[X \leftarrow \tau] = #G[X \leftarrow \tau] \cdot #H[X \leftarrow \tau]
$$

since $Y \cap Z \subseteq X$

Structural Tractability

Theorem

If (primal / incidence) graph of F of size *n* has **treewidth** k then $\# F$ can be computed in time $2^{O(k)} n$. [1]

Exhaustive DPLL:

- $\#F[X \leftarrow \tau] = \#G[X \leftarrow \tau] \cdot \#H[X \leftarrow \tau]$ since $Y \cap Z \subseteq X$
	- Branch on 2^k values $x_1, ..., x_k$
	- Recursive calls on H and G
	- Cache subformulas already solved

Tree decomposition of F [1] Samer, Marko, and Stefan Szeider. "Algorithms for propositional model counting." Journal of Discrete Algorithms 8.1 (2010): 50-64.

Hypergraph Acyclicities

the empty graph by iteratively

α -acyclicity

- Generalize acyclicity to hypergraphs:
- Used in databases/CSP (tractable conjunctive queries / CSPs).
- Usually defined in terms of tree decompositions of hypergraphs… Not today!

α -acyclicity

Generalize acyclicity to hypergraphs:

- Used in databases/CSP (tractable conjunctive queries / CSPs).
- Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A hypergraph is α -acyclic if and only if we can obtained the empty graph by iteratively removing α - leaves.

α -acyclicity

Generalize acyclicity to hypergraphs:

- Used in databases/CSP (tractable conjunctive queries / CSPs).
- Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A hypergraph is α -acyclic if and only if we can obtained the empty graph by iteratively removing α - leaves.

We call such vertex ordering: α -elimination order.

α -leaves

• $H = (V, E)$ a hypergraph. • $N(v)$: neighborhood of v

Definition

A vertex v in a hypergraph is an α -leave if $N(v) \subseteq e$ for some edge e of H

-
-

 $x_6, ..., x_1$ is an α -elimination order. • Subgraphs may no be α -acyclic (look, a triangle!)

SAT is hard on α -acyclic hypergraphs

Not a good variable-clause restriction for tractability:

- \bullet F a CNF formula
- $F' = F \wedge (x_1 \vee \dots \vee x_n \vee y)$ is α -acyclic
- \bullet F' SAT iff F is SAT.

Hard subformulas make the formula hard (this does not happen with conjunctive queries).

Enters the rest of greek alphabet

Definition

A hypergraph H is β -acyclic if and only if every $H' \subseteq H$ is α -acyclic.

How can we use it algorithmically?

Enters the rest of greek alphabet

Definition

A hypergraph H is β -acyclic if and only if every $H' \subseteq H$ is α -acyclic.

How can we use it algorithmically?

Theorem

A hypergraph H is β -acyclic if and only if there exists an order on V that is an α elimination order for every $H' \subseteq H$.

> We call such ordering a β -elimination order. Side note: this is **not** how β -elimination order is usually defined.

SAT and β -acyclicity

SAT is easy on β -acyclic instances, with a classical algorithm [2]:

Theorem

Davis-Putnam resolution following a β -elimination order terminates in polynomial time!

[2] Ordyniak, Sebastian, Daniël Paulusma, and Stefan Szeider. "Satisfiability of acyclic and almost acyclic CNF formulas." Theoretical Computer Science, 2013.

$\#SAT$ and β -acyclicity #SAT is easy on β -acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed β -elimination order terminates in polynomial time!

$\#SAT$ and β -acyclicity $\#\text{SAT}$ is easy on β -acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed β -elimination order terminates in polynomial time!

- Tractable case not captured by **bounded treewidth** or other existing graph measures
- Only works for a very restricted set of instances.

[3] Florent Capelli, Understanding the complexity of #SAT using knowledge compilation, LICS, 2017.

Hyperorder widths

Non acyclic hypergraphs

How do we measure how far we are from acyclicity?

- α -acyclicity naturally generalizes to hypertree width: htw (H) $\in \mathbb{N}$.
- Usually defined via tree decomposition.
- We give an order based definition.

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 $N(\ x_1$) covered by 2 edges of H

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 N (x_2) covered by 3 edges of $\cal H$

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph N (x_4) covered by 3 edges of H

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

 x_6

Original hypergraph N (x_5) covered by 2 edges of H

- $H = (V, E)$, $\pi = (v_1, ..., v_n)$ order on V .
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

how $(H, (x_1, ..., x_6)) = 3$ how $(H, (x_6, ..., x_1)) = 1$

Hyperorder width and Hypertree width

Hypertree width of $H : \text{htw}(H) = \min_{T} \text{htw}(H, T)$ where T is a tree decomposition Hyperorder width of $H: how (H) = min_{\pi} how (H, \pi) where \pi is an elimination order.$

Theorem

$$
how (H) = htw (H).
$$

- how $(H) = 1$ iff H is α -acyclic
- For $how(\cdot)$, the order is the decomposition.

β -Hypertree Width

Sometimes, there is $H' \subseteq H$ st htw (H') > htw (H). Same trick as before:

$$
\beta htw \ (\ H \) \ = \ \max_{H' \subseteq \ H} htw \ (\ A
$$

How can we use it algorithmically?

 H')

β -Hypertree Width

Sometimes, there is $H' \subseteq H$ st htw (H') > htw (H). Same trick as before:

$$
\beta htw \ (\ H \) \ = \ \max_{H' \subseteq \ H} htw \ (\ \bot
$$

How can we use it algorithmically?

We do not know…

 H')

Problem with β -Hypertree Width

Expanding the definition: $\beta h t w \ (\ H) = \ \max_{\Pi \in \mathcal{A}}$ $H' \subseteq H$ min \overline{T}

Problem: a different decomposition can be used for different subhypergraphs…

- htw (H',T)
	-

Problem with β -Hypertree Width

Expanding the definition: $\beta h t w \ (\ H) = \ \max_{\Pi \in \mathcal{A}}$ $H' \subseteq H$ min \overline{T}

Problem: a different decomposition can be used for different subhypergraphs…

Swap quantifiers!

 $\beta' h t w (H) = \min_{\mathcal{F}}$ \overline{T} max $H' \subseteq H$

- htw (H',T)
	-

 htw (H',T)

Problem with β -Hypertree Width

Expanding the definition: $\beta h t w \ (\ H) = \ \max_{\Pi \in \mathcal{A}}$ $H' \subseteq H$ min \overline{T}

Problem: a different decomposition can be used for different subhypergraphs…

Swap quantifiers!

 $\beta' h t w (H) = \min_{\mathcal{F}}$ \overline{T} max $H' \subseteq H$

 htw (H',T)

 htw (H',T)

Problem: $\beta' h t w$ (S_n) = $n...$

Bringing Order

For H β -acyclic:

- $H_1, H_2 \subseteq H$ may have very different tree decompositions.
- Tree decomposition is not the right tool here.

Theorem

A hypergraph H is β -acyclic if and only if there exists an order on V that is an α elimination order for every $H' \subseteq H$.

Bringing Order

For H β -acyclic:

- $H_1, H_2 \subseteq H$ may have very different tree decompositions.
- Tree decomposition is not the right tool here.

Theorem

A hypergraph H is β -acyclic if and only if there exists an order on V that is an α elimination order for every $H' \subseteq H$.

Swap quantifier in the second equality: $\beta \hbar o \hat{w}(H) = \min_{\pi}$ $\frac{1}{\pi}$ max $H' \subseteq H$ $how\ (\overset{\bullet}{H}',\pi\)$

$$
\beta h t w (H) = \max_{H' \subseteq H} \min_{T} h t w
$$

$$
= \max_{H' \subseteq H} \min_{\pi} h o w
$$

$#SAT$ and βhow (H)

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and βhow (F) = k.

$#SAT$ and βhow (H)

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and βhow (F) = k.

Algorithm: exhaustive DPLL following a reversed optimal elimination order.

$\#SAT$ and βhow (H)

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and βhow (F) = k.

- **Algorithm**: exhaustive DPLL following a reversed optimal elimination order.
- Generalizes tractability of β -acyclic formulas and bounded nest set width [4]

[4] Lanzinger, M.. Tractability beyond β-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

$\#SAT$ and βhow (H)

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and βhow (F) = k.

- **Algorithm**: exhaustive DPLL following a reversed optimal elimination order.
- Generalizes tractability of β -acyclic formulas and bounded nest set width [4]
- Algorithm implicitly constructs decision-DNNF for F :

[4] Lanzinger, M.. Tractability beyond β-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

$\#SAT$ and βhow (H)

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and βhow (F) = k.

- **Algorithm**: exhaustive DPLL following a reversed optimal elimination order.
- Generalizes tractability of β -acyclic formulas and bounded nest set width [4]
- Algorithm implicitly constructs decision-DNNF for F :
	- **gives tractable** weighted model counting
	- **tractable** direct access
	- …

[4] Lanzinger, M.. Tractability beyond β-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

- Where does β -how sit in this diagram?
- Where is the frontier for SAT?

Ad

Postdoc position open at CRIL, Lens!

References

[1] Samer, Marko, and Stefan Szeider. "Algorithms for propositional model counting." Journal of Discrete Algorithms 8.1 (2010): 50-64. [2] Ordyniak, Sebastian, Daniël Paulusma, and Stefan Szeider. "Satisfiability of acyclic and almost acyclic CNF formulas." Theoretical Computer Science, 2013. [3] Florent Capelli, "Understanding the complexity of #SAT using knowledge compilation", LICS, 2017.

[4] Lanzinger Matthias. "Tractability beyond β-acyclicity for conjunctive queries with negation and SAT". Theoretical Computer Science, 2023.

-
-
-
-
-