
A New Hypergraph Measure
for #SAT

Florent Capelli

CRIL, Université d’Artois

Dagstuhl Seminar 24421

October 17, 2024

Loosely based on Direct Access for Conjunctive Queries with Negation with Oliver Irwin, ICDT 24

1

Structural Tractability of #SAT

2

The #SAT problem

Given CNF 𝐹, return #𝐹, the number of satisfying assignments.

#P-hard to solve.

Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.

NP-hard to (even badly) approximate (see for practical work in this direction).ApproxMC

3

https://github.com/meelgroup/approxmc

The #SAT problem

Given CNF 𝐹, return #𝐹, the number of satisfying assignments.

#P-hard to solve.

Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.

NP-hard to (even badly) approximate (see for practical work in this direction).ApproxMC

Same story as SAT: hard problem but useful in practice.

Reasoning on propositionnal knowledge basis.

Solve other counting problems using parcimonious reductions.

When can we solve #SAT more efficiently than bruteforce?

3.1

https://github.com/meelgroup/approxmc

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions.

If 𝑋 ∩ 𝑌 = ∅ and 𝐹 (𝑋, 𝑧1, 𝑧2, 𝑌) ≡ 𝐺 (𝑋, 𝑧1, 𝑧2) ∧ 𝐻 (𝑌, 𝑧1, 𝑧2) :

4

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions.

If 𝑋 ∩ 𝑌 = ∅ and 𝐹 (𝑋, 𝑧1, 𝑧2, 𝑌) ≡ 𝐺 (𝑋, 𝑧1, 𝑧2) ∧ 𝐻 (𝑌, 𝑧1, 𝑧2) :

#𝐹 = �
𝑎, 𝑏 ∈ {0, 1}2

#𝐺 [𝑧1 = 𝑎, 𝑧2 = 𝑏] · #𝐻 [𝑧1 = 𝑎, 𝑧2 = 𝑏]

4.1

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions.

If 𝑋 ∩ 𝑌 = ∅ and 𝐹 (𝑋, 𝑧1, 𝑧2, 𝑌) ≡ 𝐺 (𝑋, 𝑧1, 𝑧2) ∧ 𝐻 (𝑌, 𝑧1, 𝑧2) :

#𝐹 = �
𝑎, 𝑏 ∈ {0, 1}2

#𝐺 [𝑧1 = 𝑎, 𝑧2 = 𝑏] · #𝐻 [𝑧1 = 𝑎, 𝑧2 = 𝑏]

If we can recursively decompose the formula this way, we can count

efficiently.

4.2

Structure of CNF formulas

𝐹 = (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5) ∧ (𝑥1 ∨ ¬𝑥5 ∨ ¬𝑥6) ∧

(𝑥1 ∨ 𝑥3 ∨ 𝑥5 ∨ 𝑥7)

Primal graph

Incidence graph

Hypergraph

5

Structural Tractability

Theorem

If (primal / incidence) graph of 𝐹 of size 𝑛 has treewidth 𝑘 then #𝐹 can be computed in

time 2𝑂 (𝑘)
𝑛. [1]

6

Structural Tractability

Theorem

If (primal / incidence) graph of 𝐹 of size 𝑛 has treewidth 𝑘 then #𝐹 can be computed in

time 2𝑂 (𝑘)
𝑛. [1]

Tree decomposition of 𝐹

Exhaustive DPLL:
#𝐹 [𝑋 ← 𝜏] = #𝐺 [𝑋 ← 𝜏] · #𝐻 [𝑋 ← 𝜏]

since 𝑌 ∩ 𝑍 ⊆ 𝑋

[1] Samer, Marko, and Stefan Szeider. “Algorithms for propositional model counting.” Journal of Discrete Algorithms 8.1 (2010): 50-64.

6.1

Structural Tractability

Theorem

If (primal / incidence) graph of 𝐹 of size 𝑛 has treewidth 𝑘 then #𝐹 can be computed in

time 2𝑂 (𝑘)
𝑛. [1]

Tree decomposition of 𝐹

Exhaustive DPLL:
#𝐹 [𝑋 ← 𝜏] = #𝐺 [𝑋 ← 𝜏] · #𝐻 [𝑋 ← 𝜏]

since 𝑌 ∩ 𝑍 ⊆ 𝑋

[1] Samer, Marko, and Stefan Szeider. “Algorithms for propositional model counting.” Journal of Discrete Algorithms 8.1 (2010): 50-64.

Branch on 2𝑘 values 𝑥1, …, 𝑥𝑘

Recursive calls on 𝐻 and 𝐺

Cache subformulas already solved

6.2

Hypergraph Acyclicities

7

𝛼-acyclicity

Generalize acyclicity to hypergraphs:

Used in databases/CSP (tractable conjunctive queries / CSPs).

Usually defined in terms of tree decompositions of hypergraphs… Not today!

Definition

A graph is acyclic if and only if we can obtained the empty graph by iteratively

removing leaves.

8

𝛼-acyclicity

Generalize acyclicity to hypergraphs:

Used in databases/CSP (tractable conjunctive queries / CSPs).

Usually defined in terms of tree decompositions of hypergraphs… Not today!

Definition

A graph is acyclic if and only if we can obtained the empty graph by iteratively

removing leaves.

hyper 𝛼-

𝛼-

8.1

𝛼-acyclicity

Generalize acyclicity to hypergraphs:

Used in databases/CSP (tractable conjunctive queries / CSPs).

Usually defined in terms of tree decompositions of hypergraphs… Not today!

Definition

A graph is acyclic if and only if we can obtained the empty graph by iteratively

removing leaves.

hyper 𝛼-

𝛼-

We call such vertex ordering: 𝛼-elimination order.

8.2

𝛼-leaves

𝐻 = (𝑉, 𝐸) a hypergraph.

𝑁 (𝑣) : neighborhood of 𝑣

Definition

A vertex 𝑣 in a hypergraph is an 𝛼-leave if 𝑁 (𝑣) ⊆ 𝑒 for some edge 𝑒 of 𝐻

𝑥6, …, 𝑥1 is an 𝛼-elimination order.

Subgraphs may no be 𝛼-acyclic (look, a

triangle!)

9

SAT is hard on 𝛼-acyclic hypergraphs

Not a good variable-clause restriction for tractability:

𝐹 a CNF formula

𝐹′ = 𝐹 ∧ (𝑥1 ∨ … ∨ 𝑥𝑛 ∨ 𝑦) is 𝛼-acyclic

𝐹′ SAT iff 𝐹 is SAT.

Hard subformulas make the formula hard (this does not happen with

conjunctive queries).

10

Enters the rest of greek alphabet

Definition

A hypergraph 𝐻 is 𝛽-acyclic if and only if every 𝐻′ ⊆ 𝐻 is 𝛼-acyclic.

How can we use it algorithmically?

11

Enters the rest of greek alphabet

Definition

A hypergraph 𝐻 is 𝛽-acyclic if and only if every 𝐻′ ⊆ 𝐻 is 𝛼-acyclic.

How can we use it algorithmically?

Theorem

A hypergraph 𝐻 is 𝛽-acyclic if and only if there exists an order on 𝑉 that is an 𝛼-

elimination order for every 𝐻′ ⊆ 𝐻.

We call such ordering a 𝛽-elimination order.
Side note: this is not how 𝛽-elimination order is usually defined.

11.1

SAT and 𝛽-acyclicity

SAT is easy on 𝛽-acyclic instances, with a classical algorithm [2]:

Theorem

Davis-Putnam resolution following a 𝛽-elimination order terminates in polynomial time!

[2] Ordyniak, Sebastian, Daniël Paulusma, and Stefan Szeider. “Satisfiability of acyclic and almost acyclic CNF formulas.” Theoretical Computer Science, 2013.

12

#SAT and 𝛽-acyclicity

#SAT is easy on 𝛽-acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed 𝛽-elimination order terminates in polynomial time!

13

#SAT and 𝛽-acyclicity

#SAT is easy on 𝛽-acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed 𝛽-elimination order terminates in polynomial time!

Tractable case not captured by bounded treewidth or other existing graph measures

Only works for a very restricted set of instances.
[3] Florent Capelli, Understanding the complexity of #SAT using knowledge compilation, LICS, 2017.

13.1

Hyperorder widths

14

Non acyclic hypergraphs

How do we measure how far we are from acyclicity?

𝛼-acyclicity naturally generalizes to hypertree width: ℎ𝑡𝑤 (𝐻) ∈ ℕ.

Usually defined via tree decomposition.

We give an order based definition.

15

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph

16

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph
𝑁 (𝑥1) covered by 2 edges of 𝐻

16.1

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph

𝑁 (𝑥2) covered by 3 edges of 𝐻

16.2

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph
𝑁 (𝑥3) covered by 3 edges of 𝐻

16.3

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph 𝑁 (𝑥4) covered by 3 edges of 𝐻

16.4

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph 𝑁 (𝑥5) covered by 2 edges of 𝐻

16.5

Width of an elimination order

𝐻 = (𝑉, 𝐸) , 𝜋 = (𝑣1, …, 𝑣𝑛) order on 𝑉.

Iteratively add edge 𝑁 (𝑣𝑖) and remove 𝑣𝑖

Hyperorder width ℎ𝑜𝑤 (𝐻, 𝜋) of 𝜋 = (𝑣1, …, 𝑣𝑛) : maximum number of edges from 𝐻 to cover the

neighborhood of 𝑣𝑖 in 𝐻𝑖.

Original hypergraph

ℎ𝑜𝑤 (𝐻, (𝑥1, …, 𝑥6)) = 3

ℎ𝑜𝑤 (𝐻, (𝑥6, …, 𝑥1)) = 1

16.6

Hyperorder width and Hypertree width

Hypertree width of 𝐻 : ℎ𝑡𝑤 (𝐻) = min𝑇 ℎ𝑡𝑤 (𝐻, 𝑇) where 𝑇 is a tree decomposition

Hyperorder width of 𝐻 : ℎ𝑜𝑤 (𝐻) = min𝜋 ℎ𝑜𝑤 (𝐻, 𝜋) where 𝜋 is an elimination order.

Theorem

ℎ𝑜𝑤 (𝐻) = ℎ𝑡𝑤 (𝐻) .

ℎ𝑜𝑤 (𝐻) = 1 iff 𝐻 is 𝛼-acyclic

For how(·), the order is the decomposition.

17

𝛽-Hypertree Width

Sometimes, there is 𝐻′ ⊆ 𝐻 st ℎ𝑡𝑤 (𝐻′) > ℎ𝑡𝑤 (𝐻) .

Same trick as before:

𝛽ℎ𝑡𝑤 (𝐻) = max
𝐻′ ⊆ 𝐻

ℎ𝑡𝑤 (𝐻′)

How can we use it algorithmically?

18

𝛽-Hypertree Width

Sometimes, there is 𝐻′ ⊆ 𝐻 st ℎ𝑡𝑤 (𝐻′) > ℎ𝑡𝑤 (𝐻) .

Same trick as before:

𝛽ℎ𝑡𝑤 (𝐻) = max
𝐻′ ⊆ 𝐻

ℎ𝑡𝑤 (𝐻′)

How can we use it algorithmically?

We do not know…

18.1

Problem with 𝛽-Hypertree Width

Expanding the definition:
𝛽ℎ𝑡𝑤 (𝐻) = max

𝐻′ ⊆ 𝐻
min

𝑇
ℎ𝑡𝑤 (𝐻′, 𝑇)

Problem: a different decomposition can be used for different

subhypergraphs…

19

Problem with 𝛽-Hypertree Width

Expanding the definition:
𝛽ℎ𝑡𝑤 (𝐻) = max

𝐻′ ⊆ 𝐻
min

𝑇
ℎ𝑡𝑤 (𝐻′, 𝑇)

Problem: a different decomposition can be used for different

subhypergraphs…

Swap quantifiers!

𝛽′ℎ𝑡𝑤 (𝐻) = min
𝑇

max
𝐻′ ⊆ 𝐻

ℎ𝑡𝑤 (𝐻′, 𝑇)

19.1

Problem with 𝛽-Hypertree Width

Expanding the definition:
𝛽ℎ𝑡𝑤 (𝐻) = max

𝐻′ ⊆ 𝐻
min

𝑇
ℎ𝑡𝑤 (𝐻′, 𝑇)

Problem: a different decomposition can be used for different

subhypergraphs…

Swap quantifiers!

𝛽′ℎ𝑡𝑤 (𝐻) = min
𝑇

max
𝐻′ ⊆ 𝐻

ℎ𝑡𝑤 (𝐻′, 𝑇)

𝑆4

Problem: 𝛽′ℎ𝑡𝑤 (𝑆𝑛) = 𝑛…

19.2

Bringing Order

For 𝐻 𝛽-acyclic:

𝐻1, 𝐻2 ⊆ 𝐻 may have very different tree decompositions.

Tree decomposition is not the right tool here.

Theorem

A hypergraph 𝐻 is 𝛽-acyclic if and only if there exists an order on 𝑉 that is an 𝛼-

elimination order for every 𝐻′ ⊆ 𝐻.

20

Bringing Order

For 𝐻 𝛽-acyclic:

𝐻1, 𝐻2 ⊆ 𝐻 may have very different tree decompositions.

Tree decomposition is not the right tool here.

Theorem

A hypergraph 𝐻 is 𝛽-acyclic if and only if there exists an order on 𝑉 that is an 𝛼-

elimination order for every 𝐻′ ⊆ 𝐻.

𝛽ℎ𝑡𝑤 (𝐻) = max
𝐻′ ⊆ 𝐻

min
𝑇

ℎ𝑡𝑤 (𝐻′, 𝑇)

= max
𝐻′ ⊆ 𝐻

min
𝜋

ℎ𝑜𝑤 (𝐻′, 𝜋)

Swap quantifier in the second equality:
𝛽ℎ𝑜𝑤 (𝐻) = min

𝜋
max

𝐻′ ⊆ 𝐻

ℎ𝑜𝑤 (𝐻′, 𝜋)

20.1

#SAT and 𝛽ℎ𝑜𝑤 (𝐻)

Theorem

#SAT can be solved in time 𝑛𝑂 (𝑘) for a formula 𝐹 of size 𝑛 and 𝛽ℎ𝑜𝑤 (𝐹) = 𝑘.

21

#SAT and 𝛽ℎ𝑜𝑤 (𝐻)

Theorem

#SAT can be solved in time 𝑛𝑂 (𝑘) for a formula 𝐹 of size 𝑛 and 𝛽ℎ𝑜𝑤 (𝐹) = 𝑘.

Algorithm: exhaustive DPLL following a reversed optimal elimination order.

21.1

#SAT and 𝛽ℎ𝑜𝑤 (𝐻)

Theorem

#SAT can be solved in time 𝑛𝑂 (𝑘) for a formula 𝐹 of size 𝑛 and 𝛽ℎ𝑜𝑤 (𝐹) = 𝑘.

Algorithm: exhaustive DPLL following a reversed optimal elimination order.

Generalizes tractability of 𝛽-acyclic formulas and bounded nest set width [4]

[4] Lanzinger, M.. Tractability beyond β-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

21.2

#SAT and 𝛽ℎ𝑜𝑤 (𝐻)

Theorem

#SAT can be solved in time 𝑛𝑂 (𝑘) for a formula 𝐹 of size 𝑛 and 𝛽ℎ𝑜𝑤 (𝐹) = 𝑘.

Algorithm: exhaustive DPLL following a reversed optimal elimination order.

Generalizes tractability of 𝛽-acyclic formulas and bounded nest set width [4]

Algorithm implicitly constructs decision-DNNF for 𝐹:

[4] Lanzinger, M.. Tractability beyond β-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

21.3

#SAT and 𝛽ℎ𝑜𝑤 (𝐻)

Theorem

#SAT can be solved in time 𝑛𝑂 (𝑘) for a formula 𝐹 of size 𝑛 and 𝛽ℎ𝑜𝑤 (𝐹) = 𝑘.

Algorithm: exhaustive DPLL following a reversed optimal elimination order.

Generalizes tractability of 𝛽-acyclic formulas and bounded nest set width [4]

Algorithm implicitly constructs decision-DNNF for 𝐹:

gives tractable weighted model counting

tractable direct access

…
[4] Lanzinger, M.. Tractability beyond β-acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

21.4

Wrapping up

Structural complexity of #SAT:

FPT XP open #P-hard

Where does 𝛽-how sit in this diagram?

Where is the frontier for SAT?

22

Ad

Postdoc position open at CRIL, Lens!

23

References

[1] Samer, Marko, and Stefan Szeider. “Algorithms for propositional model counting.” Journal of

Discrete Algorithms 8.1 (2010): 50-64.

[2] Ordyniak, Sebastian, Daniël Paulusma, and Stefan Szeider. “Satisfiability of acyclic and

almost acyclic CNF formulas.” Theoretical Computer Science, 2013.

[3] Florent Capelli, “Understanding the complexity of #SAT using knowledge compilation”,

LICS, 2017.

[4] Lanzinger Matthias. “Tractability beyond β-acyclicity for conjunctive queries with negation

and SAT”. Theoretical Computer Science, 2023.

24

