A New Hypergraph Measure for #SAT

Florent Capelli CRIL, Université d'Artois

Dagstuhl Seminar 24421

October 17, 2024

Loosely based on Direct Access for Conjunctive Queries with Negation with Oliver Irwin, ICDT 24

Structural Tractability of #SAT

The #SAT problem

Given CNF *F*, return #F, the number of satisfying assignments.

- #P-hard to solve.
- Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.
- NP-hard to (even badly) approximate (see ApproxMC for practical work in this direction).

The **#SAT** problem

Given CNF F, return #F, the number of satisfying assignments.

- #P-hard to solve.
- Even for very restricted classes: #Mon-2-SAT, #Horn-SAT etc.
- NP-hard to (even badly) approximate (see ApproxMC for practical work in this direction).

Same story as SAT: hard problem but useful in practice.

- Reasoning on propositionnal knowledge basis.
- Solve other counting problems using parcimonious reductions.

When can we solve #SAT more efficiently than bruteforce?

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions. If $X \cap Y = \emptyset$ and $F(X, z_1, z_2, Y) \equiv G(X, z_1, z_2) \land H(Y, z_1, z_2)$:

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions. If $X \cap Y = \emptyset$ and $F(X, z_1, z_2, Y) \equiv G(X, z_1, z_2) \land H(Y, z_1, z_2)$:

$$\#F = \sum_{a, b \in \{0, 1\}^2} \#G \left[z_1 = a, z_2 = b \right] \cdot \#I$$

 $H[z_1 = a, z_2 = b]$

Exploiting clauses-variables interactions

Tractability of #SAT arises from restricted clauses-variables interactions. If $X \cap Y = \emptyset$ and $F(X, z_1, z_2, Y) \equiv G(X, z_1, z_2) \land H(Y, z_1, z_2)$:

$$\#F = \sum_{a, b \in \{0, 1\}^2} \#G \left[z_1 = a, z_2 = b \right] \cdot \#H \left[z_1 = a, z_2 = b \right]$$

If we can recursively decompose the formula this way, we can count efficiently.

Structure of CNF formulas

$$F = (x_1 \lor \neg x_2 \lor x_3) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_3 \lor x_5 \lor x_7)$$

Primal graph

Incidence graph

$(x_1 \lor \neg x_5 \lor \neg x_6) \land$

Hypergraph

Structural Tractability

Theorem

If (primal / incidence) graph of F of size n has treewidth k then #F can be computed in time $2^{O(k)} n. [1]$

Structural Tractability

Theorem

If (primal / incidence) graph of F of size n has treewidth k then #F can be computed in time $2^{O(k)} n. [1]$

#F[X]

Tree decomposition of F[1] Samer, Marko, and Stefan Szeider. "Algorithms for propositional model counting." Journal of Discrete Algorithms 8.1 (2010): 50-64.

Exhaustive DPLL:

$$X \leftarrow \tau] = \#G [X \leftarrow \tau] \cdot \#H [X \leftarrow \tau]$$

since $Y \cap Z \subseteq X$

Structural Tractability

Theorem

If (primal / incidence) graph of F of size n has treewidth k then #F can be computed in time $2^{O(k)} n. [1]$

Tree decomposition of F[1] Samer, Marko, and Stefan Szeider. "Algorithms for propositional model counting." Journal of Discrete Algorithms 8.1 (2010): 50-64.

Exhaustive DPLL:

- $\#F[X \leftarrow \tau] = \#G[X \leftarrow \tau] \cdot \#H[X \leftarrow \tau]$ since $Y \cap Z \subset X$
 - Branch on 2^k values $x_1, ..., x_k$
 - Recursive calls on H and G
 - Cache subformulas already solved

Hypergraph Acyclicities

α -acyclicity

- Generalize acyclicity to hypergraphs:
- Used in databases/CSP (tractable conjunctive queries / CSPs).
- Usually defined in terms of tree decompositions of hypergraphs... Not today!

		Definition		
А	graph is	acyclic if and only if we ca	d only if we can obtained	
		removing	leaves.	

```
aphs:
es / CSPs).
f hypergraphs... Not today!
```

the empty graph by iteratively

α -acyclicity

Generalize acyclicity to hypergraphs:

- Used in databases/CSP (tractable conjunctive queries / CSPs).
- Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A *hyper*graph is α -acyclic if and only if we can obtained the empty graph by iteratively removing α - leaves.

```
raphs:
es / CSPs).
f hypergraphs... Not today!
```

α -acyclicity

Generalize acyclicity to hypergraphs:

- Used in databases/CSP (tractable conjunctive queries / CSPs).
- Usually defined in terms of tree decompositions of hypergraphs... Not today!

Definition

A *hyper*graph is α -acyclic if and only if we can obtained the empty graph by iteratively removing α - leaves.

We call such vertex ordering: α -elimination order.

```
aphs:
es / CSPs).
f hypergraphs... Not today!
```

α -leaves

• H = (V, E) a hypergraph. • N(v) : neighborhood of v

Definition

A vertex v in a hypergraph is an α -leave if $N(v) \subseteq e$ for some edge e of H

• $x_6, ..., x_1$ is an α -elimination order. • Subgraphs may no be α -acyclic (look, a triangle!)

SAT is hard on α -acyclic hypergraphs

Not a good variable-clause restriction for tractability:

- *F* a CNF formula
- $F' = F \land (x_1 \lor \ldots \lor x_n \lor y)$ is α -acyclic
- F' SAT iff F is SAT.

Hard subformulas make the formula hard (this does not happen with conjunctive queries).

Enters the rest of greek alphabet

Definition

A hypergraph *H* is β -acyclic if and only if every $H' \subseteq H$ is α -acyclic.

How can we use it algorithmically?

Enters the rest of greek alphabet

Definition

A hypergraph *H* is β -acyclic if and only if every $H' \subseteq H$ is α -acyclic.

How can we use it algorithmically?

Theorem

A hypergraph *H* is β -acyclic if and only if there exists an order on *V* that is an α elimination order for every $H' \subseteq H$.

We call such ordering a β -elimination order. Side note: this is **not** how β -elimination order is usually defined.

SAT and β -acyclicity

SAT is easy on β -acyclic instances, with a classical algorithm [2]:

Theorem

Davis-Putnam resolution following a β -elimination order terminates in polynomial time!

[2] Ordyniak, Sebastian, Daniël Paulusma, and Stefan Szeider. "Satisfiability of acyclic and almost acyclic CNF formulas." Theoretical Computer Science, 2013.

#SAT and β -acyclicity #SAT is easy on β -acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed β -elimination order terminates in polynomial time!

#SAT and β -acyclicity #SAT is easy on β -acyclic instances, with classical algorithm [3]:

Theorem

Exhaustive DPLL following a reversed β -elimination order terminates in polynomial time!

- Tractable case not captured by **bounded treewidth** or other existing graph measures
- Only works for a very restricted set of instances.

[3] Florent Capelli, Understanding the complexity of #SAT using knowledge compilation, LICS, 2017.

Hyperorder widths

Non acyclic hypergraphs

How do we measure how far we are from acyclicity?

- α -acyclicity naturally generalizes to hypertree width: $htw(H) \in \mathbb{N}$.
- Usually defined via tree decomposition.
- We give an order based definition.

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 $N(x_1)$ covered by 2 edges of H

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 $N(x_2)$ covered by 3 edges of H

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 $N(x_4)$ covered by 3 edges of H

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 x_6

 $N(x_5)$ covered by 2 edges of H

- $H = (V, E), \pi = (v_1, ..., v_n)$ order on V.
- Iteratively add edge $N(v_i)$ and remove v_i
- Hyperorder width how (H, π) of $\pi = (v_1, ..., v_n)$: maximum number of edges from H to cover the neighborhood of v_i in H_i .

Original hypergraph

 $\begin{array}{l} how \left(\, H, \, \left(\, x_1, ..., x_6 \, \right) \, \right) \, = 3 \\ how \left(\, H, \, \left(\, x_6, ..., x_1 \, \right) \, \right) \, = 1 \end{array}$

Hyperorder width and Hypertree width

Hypertree width of $H:htw(H) = \min_T htw(H,T)$ where T is a tree decomposition Hyperorder width of $H:how(H) = \min_{\pi} how(H,\pi)$ where π is an elimination order.

Theorem

$$how (H) = htw (H).$$

- how(H) = 1 iff H is α -acyclic
- For $how(\cdot)$, the order is the decomposition.

β -Hypertree Width

Sometimes, there is $H' \subseteq H$ st htw (H') > htw (H). Same trick as before:

$$\beta htw (H) = \max_{H' \subseteq H} htw (I)$$

How can we use it algorithmically?

h) > htw(H)

H')

β -Hypertree Width

Sometimes, there is $H' \subseteq H$ st htw (H') > htw (H). Same trick as before:

$$\beta htw (H) = \max_{H' \subseteq H} htw (I)$$

How can we use it algorithmically?

We do not know...

h) > htw(H)

H')

Problem with β -Hypertree Width

Expanding the definition: $\beta htw (H) = \max_{H' \subseteq H} \min_{T} htw (H', T)$

Problem: a different decomposition can be used for different subhypergraphs...

Problem with β -Hypertree Width

Expanding the definition: $\beta htw (H) = \max_{H' \subseteq H} \min_{T} htw (H', T)$

Problem: a different decomposition can be used for different subhypergraphs...

Swap quantifiers!

 $\beta' htw (H) = \min_{T} \max_{H' \subset H} htw (H', T)$

Problem with β -Hypertree Width

Expanding the definition: $\beta htw (H) = \max_{H' \subseteq H} \min_{T} htw (H', T)$

Problem: a different decomposition can be used for different subhypergraphs...

Swap quantifiers!

 $\beta' htw (H) = \min_{T} \max_{H' \subset H} htw (H', T)$

Problem: $\beta' htw (S_n) = n...$

Bringing Order

For $H\beta$ -acyclic:

- $H_1, H_2 \subseteq H$ may have very different tree decompositions.
- Tree decomposition is not the right tool here.

Theorem

A hypergraph H is β -acyclic if and only if there exists an order on V that is an α elimination order for every $H' \subseteq H$.

Bringing Order

For $H\beta$ -acyclic:

- $H_1, H_2 \subseteq H$ may have very different tree decompositions.
- Tree decomposition is not the right tool here.

Theorem

A hypergraph H is β -acyclic if and only if there exists an order on V that is an α elimination order for every $H' \subseteq H$.

$$\beta htw (H) = \max_{H' \subseteq H} \min_{T} htw$$
$$= \max_{H' \subseteq H} \min_{\pi} how$$

Swap quantifier in the second equality: $\beta how(H) = \min_{\pi} \max_{H' \subset H} how(H', \pi)$

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and $\beta how(F) = k$.

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and $\beta how(F) = k$.

• Algorithm: exhaustive DPLL following a reversed optimal elimination order.

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and $\beta how(F) = k$.

- Algorithm: exhaustive DPLL following a reversed optimal elimination order.
- Generalizes tractability of β -acyclic formulas and bounded nest set width [4]

[4] Lanzinger, M.. Tractability beyond β -acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and $\beta how(F) = k$.

- Algorithm: exhaustive DPLL following a reversed optimal elimination order.
- Generalizes tractability of β -acyclic formulas and bounded nest set width [4]
- Algorithm implicitly constructs decision-DNNF for F:

[4] Lanzinger, M. Tractability beyond β -acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

Theorem

#SAT can be solved in time $n^{O(k)}$ for a formula F of size n and $\beta how(F) = k$.

- Algorithm: exhaustive DPLL following a reversed optimal elimination order.
- Generalizes tractability of β -acyclic formulas and bounded nest set width [4]
- Algorithm implicitly constructs decision-DNNF for F:
 - gives tractable weighted model counting
 - tractable *direct access*
 - • •

[4] Lanzinger, M. Tractability beyond β -acyclicity for conjunctive queries with negation and SAT. Theoretical Computer Science, 2023.

- Where does β -how sit in this diagram?
- Where is the frontier for SAT?

Ad

Postdoc position open at CRIL, Lens!

References

[1] Samer, Marko, and Stefan Szeider. "Algorithms for propositional model counting." Journal of Discrete Algorithms 8.1 (2010): 50-64. [2] Ordyniak, Sebastian, Daniël Paulusma, and Stefan Szeider. "Satisfiability of acyclic and almost acyclic CNF formulas." Theoretical Computer Science, 2013. [3] Florent Capelli, "Understanding the complexity of #SAT using knowledge compilation", LICS, 2017.

[4] Lanzinger Matthias. "Tractability beyond β -acyclicity for conjunctive queries with negation and SAT". Theoretical Computer Science, 2023.