Dynamic direct access of MSO query evaluation over strings

Pierre Bourhis, Florent Capelli, Stetan Mengel and Cristian Riveros
CRIL, Université d’Artois
ICDT 2025
25 March 2025

Variable Set Automata

Tagging positions 1n words

a,b a
@ a/{x} _@ b/{y)

[A] (w)

L

Y

w b a a b a a a b a b a a

Positons 1 2 3 4 5 6 7 8 9 10 11 12

w

Tagging positions 1n words

a,b a
@ a/{x} _@ b/{y}
[Al(w) = y

bnj a b a b a a (runl) 2 4

Positions

2 3 45 6 7 8 9 10 11 12

Run 1

L Y

Tagging positions 1n words

a,b a
@ a/{x} _@ b/{y)

[Al(w) =y
w b a a a a (runl) 2 4
Positions 1 2 3 11 12
Run 1 i (run2) 5 8
Run 2 y

w

Tagging positions 1n words

Positions

b
1

a a
2 3

a,b a
@ a/{x} _@ b/{y)

Run 1

L

Run 2

Run 3

[A] (w)

(run 1)

(run 2)

5

(run 3)

9

10

Tagging positions 1n words

a,b a
@ a/{x} _@ b/{y)

w b a a b a a a b a b a a
Positions 1 2 3 4 5 6 7 8 9 10 11 12
Run 1 T Y

Run 2 T Y

Run 3 Ty

[Al(w) =y
(runl) 2 4
3 4
(run2) S5 8
6 8§
7 8
(run3) 9 10

Tagging positions in words

a,b a
@ a/{x} @ b/{y)

[Al(w) =y
w b a a b a a a b a b a a (runl) 2 4
Positions 1 2 3 4 5 6 7 8 9 10 11 12 3 4
Run 1 T Y (run2) 5 8
Run 2 % y 6 8
Run 3 T vy 7 8

(run3) 9 10

Build a data structure allowing to access each tuple in [A](w) efficiently.

Related formalisms

VSet Automata are akin to:

e Document spanners: “span” can be encoded as two variables s, (start z) and e, (end z)

Related formalisms

VSet Automata are akin to:

e Document spanners: “span” can be encoded as two variables s, (start z) and e, (end z)
« MSO over words:

= relation a(z) for each letter a: “there 1s an « at position z

» order < on positions

= first order and monadic second order quantifications

» Theorem: for each such formula ¢, there exists a vset automate A, such that [A4,] = [¢].

e(z,y) =a(x) Nb(y) AVz((x < 2Nz < y) = a(z))

a,b a a,b

a
(qo)2 _@ bily)

vset automata A, for ¢

Desirable properties

e Determinism: two edges going out of state ¢ have distinct labels.

o ¥o
Do o=

Forbidden Allowed

Desirable properties

e Determinism: two edges going out of state ¢ have distinct labels.

0 (o)

Forbidden Allowed

e 'unctionality: every path from ¢, to a final state tags each variable exactly once.

b d a)b

[[=
OSTOSTO
L AT A B

Not functional

Functional version

Desirable properties

e Determinism: two edges going out of state ¢ have distinct labels.

0 (o)

Forbidden Allowed

e unctionality: every path from ¢, to a final state tags each variable exactly once.

b d a)b

[[=
OSTOSTO
L AT A B

Not functional

Normalization

Let A be an vset automaton. One can construct a deterministic function vset automaton A’

such that [A] = [4].

e Intuition: automata over states 29X
e A’ may be of size exp(A)

In this talk: data complexity model where w 1s the dara and A 1s the query.

— A 18 considered constant, hence assumed to be deterministic and functional.

Direct Access for vset automata

Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:

e input integer k,
e output the kth tuple of [A](w) or,
e fails if & > #[A](w).

where [A](w) 1s ordered by lexicographical ordering on [n)*.

Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:

e input integer k,
e output the kth tuple of [A](w) or,
e fails if & > #[A](w).

where [A](w) 1s ordered by lexicographical ordering on [n)*.

[A] (w)

o | 0| OO | N~ B | <

T
2
3
5
6
7
9

Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:

e input integer k,
 output the kth tuple of [A](w) or,
e fails if & > #[A](w).

where [A](w) 1s ordered by lexicographical ordering on [n)*.

[Al(w) =z y
2 4
3 4
415
6 8
7 8
9 10

Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:

e input integer k,
e output the kth tuple of [A](w) or,
e fails if & > #[A](w).

where [A](w) 1s ordered by lexicographical ordering on [n)*.

[A] (w)

[A][10]

o | 0| OO | N~ B | <

T
2
3
5
6
7
9

Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:

e input integer k,
e output the kth tuple of [A](w) or,
e fails if & > #[A](w).

where [A](w) 1s ordered by lexicographical ordering on [n)*.

[A] (w)

ool CO | OO | | b |
—
A~
=

:
2
3
5
6

9 10

Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.

Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.

Naive approach:

e Precomputation: D, 1s a materialization of [A](w) 1n an array.
e Access phase: read the kth entry of D,,.

Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.

Naive approach:

e Precomputation: D, 1s a materialization of [A](w) In an array. p(n) > O(#[A](w))
e Access phase: read the kth entry of D,,.

Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.

Naive approach:

e Precomputation: D, 1s a materialization of [A](w) In an array. p(n) > O(#[A](w))
e Access phase: read the kth entry of D,,. a(n) = O(1)

Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.

Naive approach:

e Precomputation: D, 1s a materialization of [A](w) In an array. p(n) > O(#[A](w))
e Access phase: read the kth entry of D,,. a(n) = O(1)

Can we have better preprocessing without hurting access time too much?

We show that we can solve direct access for [A](w) 1n time:

e Linear time precomputation O(|w|),
 Polylogarithmic access time O(log” |w|).

O(-) notation hides constants depending on |A| but they are all polynomially bounded if 4 is deterministic and unambiguous.

Data structure 1dea

Counting reduction

Let 7 = [A](w)[k].

7(x;) 1S the first position p, for which

[[A]];clgpl (w) >k

oooooo

oooooo

Counting reduction

Let 7 = [A](w)[k].

2

7(z,) 1S the first position p, for which U
#[[A]]fmém (w) Z k k P1 e ..

Pr e e

121

Counting reduction

Let 7 = [A](w)[k].

L1

Lk

<m
p1
7(x;) 1S the first position p, for which
#1A],, <, (w) >k ki
P1
> p1

o Binary search to find p:: O(logn) calls to computing #[A], _ (w) > k by changing p
e We proceed recursively to find 7(z): first value p such that

[[A]]$1:p1,332 <p (’U)) = k

12.2

Counting reduction

Let r = [A](w)[k].

L1 Ll

7(x;) 1S the first position p, for which

#[[A]]xlgpl (w) > k

D1

> P1
o Binary search to find p:: O(logn) calls to computing #[A], _ (w) > k by changing p
e We proceed recursively to find 7(z): first value p such that

#A] 2 —py ma<p(w) 2 & —7[A],, -, (w)

12.3

Maintaining matrix products

We can express #[A],_,(w) as a matrix product (transition matrices):

P-My...M, R

Moreover: #[A]. ., and #[A4]_.. are the same product but for M, and M,.

T<p z<r

Final data structure D: represents a matrix product A, A, such that one can quickly

update D so that it represents the product where 4; is replaced by B,.

Maintaining matrix products

We can express #[A] . (w) as a matrix product (transition matrices):

T<p

P-My...M, R

Moreover: #[A]. ., and #[A4]_.. are the same product but for M, and M,.

T<p z<r

Final data structure D: represents a matrix product A, A, such that one can quickly

update D so that it represents the product where 4; is replaced by B,.

ABCDEFGH

131

Maintaining matrix products

We can express #[A] . (w) as a matrix product (transition matrices):

T<p

P-My...M, R

Moreover: #[A]. ., and #[A4]_.. are the same product but for M, and M,.

T<p z<r

Final data structure D: represents a matrix product A, A, such that one can quickly

update D so that it represents the product where 4; is replaced by B,.

ABCDUFGH

ABCD UFGH
() (o uF (Con)
OIOIOIO)X oo

13.2

Maintaining matrix products

We can express #[A] . (w) as a matrix product (transition matrices):

T<p

P-My...M, R

Moreover: #[A]. ., and #[A4]_.. are the same product but for M, and M,.

T<p z<r

Final data structure D: represents a matrix product A, A, such that one can quickly

update D so that it represents the product where 4; is replaced by B,.

ABCDUFGH

i

Update time: O(logn).
TR R F s
ofolelor elclo

13.3

Dynamic words

(Given data structures D; for w; and D, for ws,
k < "w1|77:7j < "w2|:

w1 =aj...a,, wy =by...b,
Construct D} for w} and D), for wj:
w;=ay...apb...0;ap1...a,

’UJ’2 — bl - - -bj—lbj—|—1 - - .bm

Given data structures D, for w; and D, for w,, o Concatenation of words (cut w, completely and paste

k< |wi],4,5 < |wy): at the end of w;)
Wi =aj...a,, wy=by...b, o Insertion of letter (create data structure for w;, = a in
O(1), cut it and paste it 1n w,)

Construct D} for w} and D), for w}: , |
e Remove substring (cut the substring)

i
|

a1...a5 b;...0j Gpt1...ap o Update letter (cut the letter and insert a new one in its

w’2 — bl .o bj—lbj+1 .o bm place)

Dynamic words

Given data structures D, for w; and D, for w,, o Concatenation of words (cut w, completely and paste

k< wif,4,5 < |wy): at the end of w;)

Wi =aj...a,, wy=by...b, o Insertion of letter (create data structure for w, = a in
O(1), cut it and paste it 1n w,)

Construct D} for w} and D), for wj: , |

e Remove substring (cut the substring)

Wy =ar...0 b;i...bj ag1...a, o Update letter (cut the letter and insert a new one in its

place)

’UJ’Q — bl - - -bj—lbj—|—1 - - .bm

Naive approach: in O(n + m) by doing it from scratch.

14.2

Dynamic words

Given data structures D, for w; and D, for w,, o Concatenation of words (cut w, completely and paste

k< |wi,4,5 < |wal: at the end of w;)
Wi =aj...a,, wy=by...b, o Insertion of letter (create data structure for w, = a in
O(1), cut it and paste it 1n w,)
Construct D} for w} and D), for w}: . |
e Remove substring (cut the substring)

Wy =ar...0 b;i...bj ag1...a, o Update letter (cut the letter and insert a new one in its

w’2 — bl .o bj—lbj—H .o bm place)

Naive approach: in O(n + m) by doing it from scratch.

Possible O(log(n + m)): use AVL tree operations to keep matrix product tree from balanced.

e Implementations:

= reasonable data structures

» updates may be cheap enough to maintain a query on a code base.
e Generalizations:

» Orders that are not lexicographical

= MSO over trees.

