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Tagging positions in words
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Build a data structure allowing to access each tuple in [A](w) efficiently.
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e Document spanners: “span” can be encoded as two variables s, (start z) and e, (end z)



Related formalisms

VSet Automata are akin to:

e Document spanners: “span” can be encoded as two variables s, (start z) and e, (end z)
« MSO over words:

= relation a(z) for each letter a: “there 1s an « at position z

» order < on positions

= first order and monadic second order quantifications

» Theorem: for each such formula ¢, there exists a vset automate A, such that [A4,] = [¢].

e(z,y) =a(x) Nb(y) AVz((x < 2Nz < y) = a(z))
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vset automata A, for ¢




Desirable properties

e Determinism: two edges going out of state ¢ have distinct labels.

o ¥o
Do o=

Forbidden Allowed



Desirable properties

e Determinism: two edges going out of state ¢ have distinct labels.

0 (o)

Forbidden Allowed

e 'unctionality: every path from ¢, to a final state tags each variable exactly once.

b d a)b

[ [ =
OSTOSTO
L AT A B

Not functional

Functional version




Desirable properties

e Determinism: two edges going out of state ¢ have distinct labels.

0 (o)

Forbidden Allowed

e unctionality: every path from ¢, to a final state tags each variable exactly once.

b d a)b

[ [ =
OSTOSTO
L AT A B

Not functional




Normalization

Let A be an vset automaton. One can construct a deterministic function vset automaton A’

such that [A] = [4].

e Intuition: automata over states 29X
e A’ may be of size exp(A)

In this talk: data complexity model where w 1s the dara and A 1s the query.

— A 18 considered constant, hence assumed to be deterministic and functional.



Direct Access for vset automata



Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:

e input integer k,
e output the kth tuple of [A](w) or,
e fails if & > #[A](w).

where [A](w) 1s ordered by lexicographical ordering on [n)*.
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Direct access queries
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Direct access queries

Fix a (deterministic functional) automaton A(z,...,zx) (considered constant).
A direct access query for a word w € ¥*:
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Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.
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Direct access complexity

Given w € ¥* of length n:

e Precomputation phase: construct a data structure D,, 1n time p(n).
e Access phase: given k, output [A](w)[k] In time a(n) using D,,.

Naive approach:

e Precomputation: D, 1s a materialization of [A](w) In an array. p(n) > O(#[A](w))
e Access phase: read the kth entry of D,,. a(n) = O(1)

Can we have better preprocessing without hurting access time too much?



We show that we can solve direct access for [A](w) 1n time:

e Linear time precomputation O(|w|),
 Polylogarithmic access time O(log” |w|).

O(-) notation hides constants depending on |A| but they are all polynomially bounded if 4 is deterministic and unambiguous.
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Counting reduction

Let 7 = [A](w)[k].

7(x;) 1S the first position p, for which

# [[A]];clgpl (w) >k
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Counting reduction

Let 7 = [A](w)[k].

L1

Lk

<m
p1
7(x;) 1S the first position p, for which
#1A],, <, (w) >k ki
P1
> p1

o Binary search to find p:: O(logn) calls to computing #[A], _ (w) > k by changing p
e We proceed recursively to find 7(z): first value p such that

# [[A]]$1:p1,332 <p (’U)) = k
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Counting reduction

Let r = [A](w)[k].

L1 Ll

7(x;) 1S the first position p, for which

#[[A]]xlgpl (w) > k

D1

> P1
o Binary search to find p:: O(logn) calls to computing #[A], _ (w) > k by changing p
e We proceed recursively to find 7(z): first value p such that

#A] 2 —py ma<p(w) 2 & —7[A],, -, (w)
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Maintaining matrix products

We can express #[A],_,(w) as a matrix product (transition matrices):

P-My...M, R

Moreover: #[A]. ., and #[A4]_.. are the same product but for M, and M,.

T<p z<r

Final data structure D: represents a matrix product A, A, such that one can quickly

update D so that it represents the product where 4; is replaced by B,.
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Maintaining matrix products

We can express #[A] . (w) as a matrix product (transition matrices):

T<p

P-My...M, R

Moreover: #[A]. ., and #[A4]_.. are the same product but for M, and M,.

T<p z<r

Final data structure D: represents a matrix product A, A, such that one can quickly

update D so that it represents the product where 4; is replaced by B,.

ABCDUFGH
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Dynamic words

(Given data structures D; for w; and D, for ws,
k < "w1|77:7j < "w2|:

w1 =aj...a,, wy =by...b,
Construct D} for w} and D), for wj:
w;=ay...apb...0;ap1...a,

’UJ’2 — bl - - -bj—lbj—|—1 - - .bm



Given data structures D, for w; and D, for w,, o Concatenation of words (cut w, completely and paste

k< |wi],4,5 < |wy): at the end of w;)
Wi =aj...a,, wy=by...b, o Insertion of letter (create data structure for w;, = a in
O(1), cut it and paste it 1n w, )

Construct D} for w} and D), for w}: , |
e Remove substring (cut the substring)

i
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a1...a5 b;...0j Gpt1...ap o Update letter (cut the letter and insert a new one in its

w’2 — bl .o bj—lbj+1 .o bm place)



Dynamic words

Given data structures D, for w; and D, for w,, o Concatenation of words (cut w, completely and paste

k< wif,4,5 < |wy): at the end of w;)

Wi =aj...a,, wy=by...b, o Insertion of letter (create data structure for w, = a in
O(1), cut it and paste it 1n w, )

Construct D} for w} and D), for wj: , |
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Dynamic words

Given data structures D, for w; and D, for w,, o Concatenation of words (cut w, completely and paste

k< |wi,4,5 < |wal: at the end of w;)
Wi =aj...a,, wy=by...b, o Insertion of letter (create data structure for w, = a in
O(1), cut it and paste it 1n w, )
Construct D} for w} and D), for w}: . |
e Remove substring (cut the substring)

Wy =ar...0 b;i...bj ag1...a, o Update letter (cut the letter and insert a new one in its

w’2 — bl .o bj—lbj—H .o bm place)

Naive approach: in O(n + m) by doing it from scratch.

Possible O(log(n + m)): use AVL tree operations to keep matrix product tree from balanced.




e Implementations:

= reasonable data structures

» updates may be cheap enough to maintain a query on a code base.
e Generalizations:

» Orders that are not lexicographical

= MSO over trees.






