
A Simple Algorithm for Worst Case Optimal Join and Sampling
Florent Capelli, Oliver Irwin, Sylvain Salvati

CRIL, Université d’Artois
Journées du GT DAAL 2025

13 May 2025

1/41

Joining relations

2/41

Joining like a pro
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

Devise a query plan: (𝑅 ⋈ 𝑆) ⋈ 𝑇
Materialize the intermediate joins.

3/41

Joining like a pro
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

Devise a query plan: (𝑅 ⋈ 𝑆) ⋈ 𝑇
Materialize the intermediate joins.

𝑅 ⋈ 𝑆 𝑥1 𝑥2 𝑥3

0 0 0
0 0 2
0 1 0
0 1 2
2 1 3

3.1/41

Joining like a pro
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

Devise a query plan: (𝑅 ⋈ 𝑆) ⋈ 𝑇
Materialize the intermediate joins.

𝑅 ⋈ 𝑆 ⋈ 𝑇 𝑥1 𝑥2 𝑥3

0 0 0
0 0 2
0 1 0
0 1 2
2 1 3

3.2/41

Joining like a pro
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

Devise a query plan: (𝑅 ⋈ 𝑆) ⋈ 𝑇
Materialize the intermediate joins.

𝑅 ⋈ 𝑆 ⋈ 𝑇 𝑥1 𝑥2 𝑥3

0 0 2
0 1 0
0 1 2

3.3/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.1/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.2/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.3/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.4/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.5/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.6/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.7/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.8/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.9/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.10/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.11/41

Joining like a brute
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

4.12/41

Disruptive poll
In theory, is it better to join like:

a. A pro
b. A brute

5/41

Disruptive poll
In theory, is it better to join like:

a. A pro
b. A brute

5.1/41

No confidence vote
a. Go home, you are not qualified to talk about joins after saying dumb things like that.
b. We are all theorist here, please tell us the whole story

6/41

No confidence vote
a. Go home, you are not qualified to talk about joins after saying dumb things like that.
b. We are all theorist here, please tell us the whole story

6.1/41

What is wrong with joining like a pro
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

It is known that if |𝑅𝔻|, |𝑆𝔻|, |𝑇𝔻| ≤ 𝑁, then |𝑄(𝔻)| ≤ 𝑁
1.5.

𝑅 ⋈ 𝑆 may have 𝑁2 answers!

7/41

Worst scenario for query plans
Consider 𝔻 on domain 𝐷 = 𝐷1 ⊎ 𝐷2 ⊎ 𝐷3 with:

0 ∉ 𝐷

|𝐷1| = |𝐷2| = |𝐷3| = 𝑁.

𝑅 𝑥1 𝑥2

0 𝐷2

𝐷1 0

𝑆 𝑥1 𝑥3

0 𝐷3

𝐷1 0

𝑇 𝑥2 𝑥3

0 𝐷3

𝐷2 0

|𝑅𝔻 ⋈ 𝑆
𝔻| ≥ 𝑁

2, |𝑅𝔻 ⋈ 𝑇
𝔻| ≥ 𝑁

2, |𝑆𝔻 ⋈ 𝑇
𝔻| ≥ 𝑁

2

|𝑄(𝔻)| = 0.

Every query plan will materialize a table of size 𝑂(𝑁2) but the answer table will never be of size greater than (2𝑁)
1.5.

8/41

And the brute?
Domain 𝐷 = 𝐷1 ⊎ 𝐷2 ⊎ 𝐷3 with 0 ∉ 𝐷 and |𝐷1| = |𝐷2| = |𝐷3| = 𝑁.

𝑅 𝑥1 𝑥2

0 𝐷2

𝐷1 0

𝑆 𝑥1 𝑥3

0 𝐷3

𝐷1 0

𝑇 𝑥2 𝑥3

0 𝐷3

𝐷2 0

x₁

x₂

0

x₂

∈D₁

⊥

else

x₃

∈D₂

⊥

else

⊥

0

⊥

else

x₃

0

⊥

else

⊥

0

⊥

else

If we do the “else” branches efficiently (e.g. by reading values from one table), the algorithm makes 𝑂(𝑁) recursive calls.

9/41

Worst-case optimality

10/41

Worst-case optimal join
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

Ideal complexity: output 𝑄(𝔻) in time 𝑂(𝑓(|𝑄|) ⋅ |𝑄(𝔻)|)…

… unlikely to be possible.

𝑓(|𝑄|): data complexity, ie, 𝑄 is considered constant. Ideally, 𝑓 is a reasonable polynomial though.

11/41

Worst-case optimal join
𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

Ideal complexity: output 𝑄(𝔻) in time 𝑂(𝑓(|𝑄|) ⋅ |𝑄(𝔻)|)…

… unlikely to be possible.

Worst case optimal: output 𝑄(𝔻) in time ̃𝑂(𝑓(|𝑄|) ⋅ 𝑁
1.5).

𝑁 is the size of the largest input relation and ̃

𝑂(⋅) ignores polylog factors.

𝑓(|𝑄|): data complexity, ie, 𝑄 is considered constant. Ideally, 𝑓 is a reasonable polynomial though.

11.1/41

Worst case value
Consider a join query 𝑄 and all databases for 𝑄 with a bound 𝑁 on the table size:

𝒟𝑄

≤ 𝑁
= {𝔻 ∣ ∀𝑅 ∈ 𝑄, |𝑅𝔻| ≤ 𝑁}

and let:
𝗐𝖼(𝑄, 𝑁) = 𝗌𝗎𝗉

𝔻 ∈ 𝒟𝑄

≤ 𝑁 |𝑄(𝔻)|

𝗐𝖼(𝑄, 𝑁) is the worst case: the size of the biggest answer set possible with query 𝑄 and databases where each table are bounded by 𝑁.

12/41

Worst case examples

13/41

Worst case examples
Cartesian product: 𝑄

2
= 𝑅1(𝑥1) ∧ 𝑅2(𝑥2) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

2.

13.1/41

Worst case examples
Cartesian product: 𝑄

2
= 𝑅1(𝑥1) ∧ 𝑅2(𝑥2) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

2.
Similarly: 𝑄

𝑘
= 𝑅1(𝑥1) ∧ … ∧ 𝑅𝑘(𝑥𝑘) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

𝑘.

13.2/41

Worst case examples
Cartesian product: 𝑄

2
= 𝑅1(𝑥1) ∧ 𝑅2(𝑥2) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

2.
Similarly: 𝑄

𝑘
= 𝑅1(𝑥1) ∧ … ∧ 𝑅𝑘(𝑥𝑘) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

𝑘.
Square query: 𝑄

▫
= 𝑅(𝑥1, 𝑥2) ∧ 𝑅(𝑥2, 𝑥3) ∧ 𝑅(𝑥3, 𝑥4) ∧ 𝑅(𝑥4, 𝑥1) has 𝗐𝖼(𝑄

▫
, 𝑁) = 𝑁

2.

13.3/41

Worst case examples
Cartesian product: 𝑄

2
= 𝑅1(𝑥1) ∧ 𝑅2(𝑥2) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

2.
Similarly: 𝑄

𝑘
= 𝑅1(𝑥1) ∧ … ∧ 𝑅𝑘(𝑥𝑘) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

𝑘.
Square query: 𝑄

▫
= 𝑅(𝑥1, 𝑥2) ∧ 𝑅(𝑥2, 𝑥3) ∧ 𝑅(𝑥3, 𝑥4) ∧ 𝑅(𝑥4, 𝑥1) has 𝗐𝖼(𝑄

▫
, 𝑁) = 𝑁

2.
Triangle query: 𝑄

Δ
= 𝑅(𝑥, 𝑦) ∧ 𝑆(𝑥, 𝑧) ∧ 𝑇(𝑦, 𝑧), 𝗐𝖼(𝑄

Δ
, 𝑁) = 𝑁

1.5.

13.4/41

Worst case examples
Cartesian product: 𝑄

2
= 𝑅1(𝑥1) ∧ 𝑅2(𝑥2) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

2.
Similarly: 𝑄

𝑘
= 𝑅1(𝑥1) ∧ … ∧ 𝑅𝑘(𝑥𝑘) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

𝑘.
Square query: 𝑄

▫
= 𝑅(𝑥1, 𝑥2) ∧ 𝑅(𝑥2, 𝑥3) ∧ 𝑅(𝑥3, 𝑥4) ∧ 𝑅(𝑥4, 𝑥1) has 𝗐𝖼(𝑄

▫
, 𝑁) = 𝑁

2.
Triangle query: 𝑄

Δ
= 𝑅(𝑥, 𝑦) ∧ 𝑆(𝑥, 𝑧) ∧ 𝑇(𝑦, 𝑧), 𝗐𝖼(𝑄

Δ
, 𝑁) = 𝑁

1.5.
The n-cycle: 𝑄

𝐶𝑛

(𝑥1, …, 𝑥𝑛) = 𝑅1(𝑥1, 𝑥2) ∧ 𝑅2(𝑥2, 𝑥3) ∧ … ∧ 𝑅𝑛(𝑥𝑛, 𝑥1): 𝗐𝖼(𝑄
𝐶𝑛

) = 𝑁
𝑛
2 .

13.5/41

Worst case examples
Cartesian product: 𝑄

2
= 𝑅1(𝑥1) ∧ 𝑅2(𝑥2) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

2.
Similarly: 𝑄

𝑘
= 𝑅1(𝑥1) ∧ … ∧ 𝑅𝑘(𝑥𝑘) has 𝗐𝖼(𝑄

2
, 𝑁) = 𝑁

𝑘.
Square query: 𝑄

▫
= 𝑅(𝑥1, 𝑥2) ∧ 𝑅(𝑥2, 𝑥3) ∧ 𝑅(𝑥3, 𝑥4) ∧ 𝑅(𝑥4, 𝑥1) has 𝗐𝖼(𝑄

▫
, 𝑁) = 𝑁

2.
Triangle query: 𝑄

Δ
= 𝑅(𝑥, 𝑦) ∧ 𝑆(𝑥, 𝑧) ∧ 𝑇(𝑦, 𝑧), 𝗐𝖼(𝑄

Δ
, 𝑁) = 𝑁

1.5.
The n-cycle: 𝑄

𝐶𝑛

(𝑥1, …, 𝑥𝑛) = 𝑅1(𝑥1, 𝑥2) ∧ 𝑅2(𝑥2, 𝑥3) ∧ … ∧ 𝑅𝑛(𝑥𝑛, 𝑥1): 𝗐𝖼(𝑄
𝐶𝑛

) = 𝑁
𝑛
2 .

We know how to compute 𝜌(𝑄) such that 𝗐𝖼(𝑄, 𝑁) = ̃

𝑂(𝑁
𝜌(𝑄)

) but we do not need it!
This is known as the AGM-bound

13.6/41

Worst case optimal join (WCOJ) algorithms
A join algorithm is worst case optimal (wrt 𝒟𝑄

≤ 𝑁) if for every 𝑄, 𝑁 ∈ ℕ and 𝔻 ∈ 𝒟𝑄

≤ 𝑁, it computes 𝑄(𝔻) in time
̃𝑂(𝑓(|𝑄|) ⋅ 𝗐𝖼(𝑄, 𝑁))

Data complexity model: 𝑄 considered constant hence 𝑓(|𝑄|) also.
In this talk, 𝑓 will be a reasonable polynomial!

The DBMS approach is not worst case optimal (triangle example from before).

14/41

Existing WCOJ Algorithm
Rich literature:

NPRR join (Ngo, Porat, Ré, Rudra, PODS12): usual join plans but with relations partitionned into high/low degree tuples.
Leapfrog Triejoin (Veldhuizen, ICDT14)
Generic Join (Ngo, PODS18): both branch and bound algorithms as ours but more complex analysis/data structures.
PANDA (PODS17): handle complex database constraints, very complex, long analysis.

We prove the worst case optimality of the branch and bound algorithm in an elementary way.

15/41

Analysing the brute

16/41

Algorithm reminder

17/41

Algorithm reminder

17.1/41

Algorithm reminder

17.2/41

Complexity analysis

One recursive call:
branch variable 𝑥𝑖 on value 𝑑 ∈ 𝖽𝗈𝗆
filter/project relations with 𝑥𝑖

Binary search in 𝑂(log |𝑅|) if 𝑅 ordered
(𝑂(1) possible using tries).

𝑅 𝑥1 𝑥2

▸ 0 0
0 2
1 0
1 1
2 0
2 1 ◂

Total complexity: number of recursive calls times ̃

𝑂(𝑚) where 𝑚 is the number of atoms.

18/41

Complexity analysis

One recursive call:
branch variable 𝑥𝑖 on value 𝑑 ∈ 𝖽𝗈𝗆
filter/project relations with 𝑥𝑖

Binary search in 𝑂(log |𝑅|) if 𝑅 ordered
(𝑂(1) possible using tries).

𝑅 𝑥1 𝑥2

0 0
0 2

▸ 1 0
1 1
2 0
2 1 ◂

Total complexity: number of recursive calls times ̃

𝑂(𝑚) where 𝑚 is the number of atoms.

18.1/41

Complexity analysis

One recursive call:
branch variable 𝑥𝑖 on value 𝑑 ∈ 𝖽𝗈𝗆
filter/project relations with 𝑥𝑖

Binary search in 𝑂(log |𝑅|) if 𝑅 ordered
(𝑂(1) possible using tries).

𝑅 𝑥1 𝑥2

0 0
0 2

▸ 1 0
1 1 ◂

2 0
2 1

Total complexity: number of recursive calls times ̃

𝑂(𝑚) where 𝑚 is the number of atoms.

18.2/41

Number of calls: example

Nodes: partial assignment 𝜏
Here: 𝜏 := {𝑥1 = 0, 𝑥2 = 1}
Not ⊥ node: partial assignment compatible with every relation
𝜏 solution of 𝑄

2
(𝔻2): project on 𝑥1, 𝑥2.

At most: |𝑄
2
(𝔻2)| such nodes at level 3

𝑄 ≔ 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥1, 𝑥3) ∧ 𝑇(𝑥2, 𝑥3)

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

𝑄
2

≔ 𝑅2(𝑥1, 𝑥2) ∧ 𝑆2(𝑥1) ∧ 𝑇2(𝑥2)

𝑅2 𝑥1 𝑥2

0 0
0 1
2 1

𝑆2 𝑥1

0
2

𝑇2 𝑥2

0
1

19/41

Number of calls in general

a call = a node = a partial assignment.
𝜏 := 𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖 current call, not ⊥ :

No inconsistency.
𝑅

𝔻[𝜏] not empty for each 𝑅 ∈ 𝑄
𝜏 ∈ 𝑄

𝑖
(𝔻) for 𝑄

𝑖
= ⋀

𝑅 ∈ 𝑄
∏

𝑥1…𝑥𝑖

𝑅

≤ ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)| such nodes!

20/41

Number of calls in general

a call = a node = a partial assignment.
𝜏 := 𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖 current call, not ⊥ :

No inconsistency.
𝑅

𝔻[𝜏] not empty for each 𝑅 ∈ 𝑄
𝜏 ∈ 𝑄

𝑖
(𝔻) for 𝑄

𝑖
= ⋀

𝑅 ∈ 𝑄
∏

𝑥1…𝑥𝑖

𝑅

≤ ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)| such nodes!

𝜏 := 𝑥1 = 𝑑1, …, 𝑥𝑖 + 1 = 𝑑𝑖 + 1 current call is ⊥ :
𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖 is not ⊥.
≤ |𝖽𝗈𝗆|⋅ ∑

𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)| ⊥-nodes!

20.1/41

Number of calls in general

a call = a node = a partial assignment.
𝜏 := 𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖 current call, not ⊥ :

No inconsistency.
𝑅

𝔻[𝜏] not empty for each 𝑅 ∈ 𝑄
𝜏 ∈ 𝑄

𝑖
(𝔻) for 𝑄

𝑖
= ⋀

𝑅 ∈ 𝑄
∏

𝑥1…𝑥𝑖

𝑅

≤ ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)| such nodes!

𝜏 := 𝑥1 = 𝑑1, …, 𝑥𝑖 + 1 = 𝑑𝑖 + 1 current call is ⊥ :
𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖 is not ⊥.
≤ |𝖽𝗈𝗆|⋅ ∑

𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)| ⊥-nodes!

At most (|𝖽𝗈𝗆|+1) ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)| calls.

Complexity: ̃𝑂(𝑚|𝖽𝗈𝗆|⋅ ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)|).

20.2/41

Toward worst case optimality
|𝑄

𝑖
(𝔻)| = | ⋀

𝑅 ∈ 𝑄
∏

𝑥1…𝑥𝑖

𝑅
𝔻|

= | ⋀
𝑅 ∈ 𝑄

𝑅
𝔻

′

|

= |𝑄(𝔻′)|

where 𝑅𝔻
′

= ∏
𝑥1…𝑥𝑖

𝑅
𝔻 × {0}

𝑋𝑅\𝑥1, …, 𝑥𝑖

𝔻

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

𝔻2

𝑅2 𝑥1 𝑥2

0 0
0 1
2 1

𝑆2 𝑥1

0
2

𝑇2 𝑥2

0
1

𝔻
′

𝑅
′ 𝑥1 𝑥2

0 0
0 1
2 1

𝑆
′

𝑥1 𝑥3

0 0
2 0

𝑇
′

𝑥2 𝑥3

0 0
1 0

21/41

Toward worst case optimality
|𝑄

𝑖
(𝔻)| = | ⋀

𝑅 ∈ 𝑄
∏

𝑥1…𝑥𝑖

𝑅
𝔻|

= | ⋀
𝑅 ∈ 𝑄

𝑅
𝔻

′

|

= |𝑄(𝔻′)|

where 𝑅𝔻
′

= ∏
𝑥1…𝑥𝑖

𝑅
𝔻 × {0}

𝑋𝑅\𝑥1, …, 𝑥𝑖

Crucial observation:

|𝑅𝔻
′

| = | ∏
𝑥1…𝑥𝑖

𝑅
𝔻| ≤ |𝑅𝔻| ≤ 𝑁

Hence 𝔻′
∈ 𝒟𝑄

≤ 𝑁.
|𝑄

𝑖
(𝔻)| = |𝑄(𝔻′)| ≤ 𝗐𝖼(𝑄, 𝑁)

𝔻

𝑅 𝑥1 𝑥2

0 0
0 1
2 1

𝑆 𝑥1 𝑥3

0 0
0 2
2 3

𝑇 𝑥2 𝑥3

0 2
1 0
1 2

𝔻2

𝑅2 𝑥1 𝑥2

0 0
0 1
2 1

𝑆2 𝑥1

0
2

𝑇2 𝑥2

0
1

𝔻
′

𝑅
′ 𝑥1 𝑥2

0 0
0 1
2 1

𝑆
′

𝑥1 𝑥3

0 0
2 0

𝑇
′

𝑥2 𝑥3

0 0
1 0

21.1/41

Branch and bound complexity
|𝑄

𝑖
(𝔻)| ≤ 𝑤𝑐(𝑄, 𝑁)

The complexity of the branch and bound algorithm is

22/41

Branch and bound complexity
|𝑄

𝑖
(𝔻)| ≤ 𝑤𝑐(𝑄, 𝑁)

The complexity of the branch and bound algorithm is

̃𝑂(𝑚|𝖽𝗈𝗆|⋅ ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)|)

22.1/41

Branch and bound complexity
|𝑄

𝑖
(𝔻)| ≤ 𝑤𝑐(𝑄, 𝑁)

The complexity of the branch and bound algorithm is

̃

𝑂(𝑚|𝖽𝗈𝗆|⋅𝑛𝗐𝖼(𝑄, 𝑁))

22.2/41

Branch and bound complexity
|𝑄

𝑖
(𝔻)| ≤ 𝑤𝑐(𝑄, 𝑁)

The complexity of the branch and bound algorithm is

̃

𝑂(𝑚𝑛 ⋅ |𝖽𝗈𝗆|⋅𝗐𝖼(𝑄, 𝑁))

22.3/41

Branch and bound complexity
|𝑄

𝑖
(𝔻)| ≤ 𝑤𝑐(𝑄, 𝑁)

The complexity of the branch and bound algorithm is

̃

𝑂(𝑚𝑛 ⋅ |𝖽𝗈𝗆|⋅𝗐𝖼(𝑄, 𝑁))

We do not even need to know 𝗐𝖼(𝑄, 𝑁) to prove it!

22.4/41

Branch and bound complexity
|𝑄

𝑖
(𝔻)| ≤ 𝑤𝑐(𝑄, 𝑁)

The complexity of the branch and bound algorithm is

̃

𝑂(𝑚𝑛 ⋅ |𝖽𝗈𝗆|⋅𝗐𝖼(𝑄, 𝑁))

We do not even need to know 𝗐𝖼(𝑄, 𝑁) to prove it!

22.5/41

Make the domain binary!
𝑅 𝑥 𝑦

1 2
2 1
3 0

⇝

̃

𝑅
𝑏

𝑥2 𝑥1 𝑥0 𝑦2 𝑦1 𝑦0

0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0

𝑄 ⇝ ̃𝑄
𝑏

 has 𝑏𝑛 variables
𝔻 ⇝ ̃

𝔻
𝑏

 for 𝑏 = log |𝖽𝗈𝗆|. Database has roughly the same bitsize but size 2 domain!

23/41

WCOJ finally
To compute 𝑄(𝔻) run simple branch and bound algorithm on (̃

𝑄
𝑏

, ̃

𝔻
𝑏

):

runs in time ̃

𝑂(𝑚 ⋅ (𝑛log |𝖽𝗈𝗆|) ⋅ 2𝗐𝖼(̃

𝑄
𝑏

, 𝑁, 2))

where 𝗐𝖼(̃

𝑄
𝑏

, 𝑁, 2) is the worst case for ̃

𝑄
𝑏

 on relations of size ≤ 𝑁 and domain 2.
𝗐𝖼(̃𝑄

𝑏

, 𝑁, 2) ≤ 𝗐𝖼(𝑄, 𝑁) by reconverting back to larger domain.

We hence compute 𝑄(𝔻) in time ̃

𝑂(𝑚𝑛 ⋅ 𝗐𝖼(𝑄, 𝑁))!

24/41

More on Binarization
Explicit binarization is not necessary: fix one bit of the variables at a time and filter 𝔻.
Using bigger bases (bytes, words etc.):

depth/width tradeoff
may be interesting in practice
Interesting base: log |𝖽𝗈𝗆|.

25/41

Sampling answers uniformly

26/41

Problem statement
Given 𝑄 and 𝔻, sample 𝜏 ∈ 𝑄(𝔻) with probability 1

|𝑄(𝔻)| or fail if 𝑄(𝔻) = ∅.

Naive algorithm:
materialize 𝑄(𝔻) in a table
sample 𝑖 ≤ |𝑄(𝔻)| uniformly
output 𝑄(𝔻)[𝑖].

Complexity using WCOJ: ̃𝑂(𝗐𝖼(𝑄, 𝑁)𝑝𝑜𝑙𝑦(|𝑄|)).

27/41

Problem statement
Given 𝑄 and 𝔻, sample 𝜏 ∈ 𝑄(𝔻) with probability 1

|𝑄(𝔻)| or fail if 𝑄(𝔻) = ∅.

Naive algorithm:
materialize 𝑄(𝔻) in a table
sample 𝑖 ≤ |𝑄(𝔻)| uniformly
output 𝑄(𝔻)[𝑖].

Complexity using WCOJ: ̃𝑂(𝗐𝖼(𝑄, 𝑁)𝑝𝑜𝑙𝑦(|𝑄|)).

We can do better: (expected) time ̃

𝑂(𝗐𝖼(𝑄, 𝑁)
|𝑄(𝔻)|+1𝑝𝑜𝑙𝑦(|𝑄|))

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

27.1/41

Problem statement
Given 𝑄 and 𝔻, sample 𝜏 ∈ 𝑄(𝔻) with probability 1

|𝑄(𝔻)| or fail if 𝑄(𝔻) = ∅.

Naive algorithm:
materialize 𝑄(𝔻) in a table
sample 𝑖 ≤ |𝑄(𝔻)| uniformly
output 𝑄(𝔻)[𝑖].

Complexity using WCOJ: ̃𝑂(𝗐𝖼(𝑄, 𝑁)𝑝𝑜𝑙𝑦(|𝑄|)).

We can do better: (expected) time ̃

𝑂(𝗐𝖼(𝑄, 𝑁)
|𝑄(𝔻)|+1𝑝𝑜𝑙𝑦(|𝑄|))

PODS 23: [Deng, Lu, Tao] and [Kim, Ha, Fletcher, Han]

Let’s do a modular proof of this fact!

27.2/41

Revisiting the problem

Sampling answers reduces to sampling ⊤ -leaves in a tree with (⊤ ,⊥)-labeled
leaves.

28/41

Sampling leaves, the easy way

ℓ(𝑡): number of ⊤ -leaves below 𝑡 is known
Recursively sample uniformly a ⊤-leaf in 𝑡𝑖 with probability ℓ(𝑡𝑖)

ℓ(𝑡) .
A leaf in ℓ(𝑡𝑖) will hence be sampled with probability

1

ℓ(𝑡𝑖)
×

ℓ(𝑡𝑖)

ℓ(𝑡)
=

1

ℓ(𝑡)
Uniform!

29/41

Sampling leaves, the easy way

ℓ(𝑡): number of ⊤ -leaves below 𝑡 is known
Recursively sample uniformly a ⊤-leaf in 𝑡𝑖 with probability ℓ(𝑡𝑖)

ℓ(𝑡) .
A leaf in ℓ(𝑡𝑖) will hence be sampled with probability

1

ℓ(𝑡𝑖)
×

ℓ(𝑡𝑖)

ℓ(𝑡)
=

1

ℓ(𝑡)
Uniform!

In our case, we do not know ℓ(𝑡)…

29.1/41

Sampling leaves with a nice oracle

𝑢𝑝𝑏(𝑡): upperbound on the number of ⊤ -leaves below 𝑡 is known
Recursively sample uniformly a ⊤-leaf in 𝑡𝑖 with probability 𝑢𝑝𝑏(𝑡𝑖)

𝑢𝑝𝑏(𝑡)
.

Fail with probability 1 − ∑
𝑖

𝑢𝑝𝑏(𝑡𝑖)
𝑢𝑝𝑏(𝑡)

 or upon encountering ⊥ .
Only makes sense if ∑

𝑖
𝑢𝑝𝑏(𝑡𝑖) ≤ 𝑢𝑝𝑏(𝑡).

30/41

Sampling leaves with a nice oracle

𝑢𝑝𝑏(𝑡): upperbound on the number of ⊤ -leaves below 𝑡 is known
Recursively sample uniformly a ⊤-leaf in 𝑡𝑖 with probability 𝑢𝑝𝑏(𝑡𝑖)

𝑢𝑝𝑏(𝑡)
.

Fail with probability 1 − ∑
𝑖

𝑢𝑝𝑏(𝑡𝑖)
𝑢𝑝𝑏(𝑡)

 or upon encountering ⊥ .
Only makes sense if ∑

𝑖
𝑢𝑝𝑏(𝑡𝑖) ≤ 𝑢𝑝𝑏(𝑡).

Las Vegas uniform sampling algorithm:
each leaf is output with probability 1

𝑢𝑏𝑝(𝑡),
fails with proba 1 − ℓ(𝑡)

𝑢𝑝𝑏(𝑡)
 where ℓ(𝑡) is the number of ⊤ -leaves under 𝑡.

Repeat until output: 𝑂(
𝑢𝑝𝑏(𝑟)
ℓ(𝑟)) expected calls, where 𝑟 is the root.

30.1/41

Upper bound oracles for conjunctive queries

Node 𝑡: partial assignment 𝜏𝑡 := (𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖)
Number of ⊤ leaves below 𝑡: |𝑄(𝔻)[𝜏𝑡]|.
𝑢𝑝𝑏(𝑡)???: look for worst case bounds!

31/41

Upper bound oracles for conjunctive queries

Node 𝑡: partial assignment 𝜏𝑡 := (𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖)
Number of ⊤ leaves below 𝑡: |𝑄(𝔻)[𝜏𝑡]|.
𝑢𝑝𝑏(𝑡)???: look for worst case bounds!

AGM bound: there exists positive rational numbers (𝜆𝑅)
𝑅 ∈ 𝑄

 such that

|𝑄(𝔻)| ≤ ∏
𝑅 ∈ 𝑄

|𝑅𝔻|
𝜆𝑅 ≤ 𝗐𝖼(𝑄, 𝑁)

31.1/41

Upper bound oracles for conjunctive queries

Node 𝑡: partial assignment 𝜏𝑡 := (𝑥1 = 𝑑1, …, 𝑥𝑖 = 𝑑𝑖)
Number of ⊤ leaves below 𝑡: |𝑄(𝔻)[𝜏𝑡]|.
𝑢𝑝𝑏(𝑡)???: look for worst case bounds!

AGM bound: there exists positive rational numbers (𝜆𝑅)
𝑅 ∈ 𝑄

 such that

|𝑄(𝔻)| ≤ ∏
𝑅 ∈ 𝑄

|𝑅𝔻|
𝜆𝑅 ≤ 𝗐𝖼(𝑄, 𝑁)

Define 𝑢𝑝𝑏(𝑡) = ∏
𝑅 ∈ 𝑄

|𝑅
𝔻
[𝜏𝑡]|

𝜆
𝑅 ≤ 𝗐𝖼(𝑄, 𝑁):

it is an upper bound on |𝑄(𝔻)[𝜏𝑡]|,
it is supperadditive: 𝑢𝑝𝑏(𝑡) ≥ ∑

𝑑 ∈ 𝖽𝗈𝗆 𝑢𝑝𝑏(𝑡𝑑)

value of 𝑢𝑝𝑏 at the root of the tree: 𝗐𝖼(𝑄, 𝑁)!

31.2/41

Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤ -leaves in a tree at each node, we have:

Las Vegas uniform sampling algorithm:
each leaf is output with probability 1

𝑢𝑏𝑝(𝑡)

fails with proba 1 − ℓ(𝑡)
𝑢𝑝𝑏(𝑡)

Repeat until output: 𝑂(
𝑢𝑝𝑏(𝑟)
ℓ(𝑟)) expected calls.

32/41

Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤ -leaves in a tree at each node, we have:

Las Vegas uniform sampling algorithm:
each leaf /answer is output with probability 1

𝑢𝑏𝑝(𝑡)
 = 1

𝑤𝑐(𝑄, 𝑁)

fails with proba 1 − ℓ(𝑡)
𝑢𝑝𝑏(𝑡) = 1 −

|𝑄(𝔻)|
𝑤𝑐(𝑄, 𝑁)

Repeat until output: 𝑂(
𝑢𝑝𝑏(𝑟)
ℓ(𝑟)) =

𝗐𝖼(𝑄, 𝑁)
1 + |𝑄(𝔻)|

 expected calls.

32.1/41

Wrapping up sampling
Given a super-additive function upperbounding the number of ⊤ -leaves in a tree at each node, we have:

Las Vegas uniform sampling algorithm:
each leaf /answer is output with probability 1

𝑢𝑏𝑝(𝑡)
 = 1

𝑤𝑐(𝑄, 𝑁)

fails with proba 1 − ℓ(𝑡)
𝑢𝑝𝑏(𝑡) = 1 −

|𝑄(𝔻)|
𝑤𝑐(𝑄, 𝑁)

Repeat until output: 𝑂(
𝑢𝑝𝑏(𝑟)
ℓ(𝑟)) =

𝗐𝖼(𝑄, 𝑁)
1 + |𝑄(𝔻)|

 expected calls.

Final complexity: binarize to navigate the tree in ̃

𝑂(𝑛𝑚): ̃

𝑂(𝑛𝑚 ⋅

𝗐𝖼(𝑄, 𝑁)
1 + |𝑄(𝔻)|)

Matches existing results, proof more modular.

32.2/41

Beyond Cardinality Constraints

33/41

Worst case and constraints
So far we have considered worst case wrt this class:

𝒟𝑄

≤ 𝑁
= {𝔻 ∣ ∀𝑅 ∈ 𝑄, |𝑅

𝔻
| ≤ 𝑁}

𝗐𝖼(𝑄, 𝑁) = sup 𝔻 ∈ 𝒟𝑄

≤ 𝑁|𝑄(𝔻)|

Each relation is subject to a cardinality constraint of size 𝑁.
What if we know that our instance has some extra properties (e.g., a functional dependency)

We know 𝔻 ∈ 𝒞 ⊆ 𝒟𝑄

≤ 𝑁

We want the join to run in ̃

𝑂(𝑓(|𝑄|) ⋅ 𝗐𝖼(𝑄, 𝒞)) where 𝗐𝖼(𝑄, 𝒞) := sup 𝔻 ∈ 𝒞|𝑄(𝔻)|.

In this case, we say that our algorithm is worst case optimal wrt 𝒞.

34/41

Finer constraints can help
𝑄 = 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥2, 𝑥3).

We have: 𝗐𝖼(𝑄, 𝑁) = 𝑁
2.

35/41

Finer constraints can help
𝑄 = 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥2, 𝑥3).

We have: 𝗐𝖼(𝑄, 𝑁) = 𝑁
2.

Let 𝒞 be the class of databases where |𝑅| ≤ 𝑁, |𝑆| ≤ 𝑁 and 𝑅 respect functional dependency 𝑥2 → 𝑥1.
𝗐𝖼(𝑄, 𝒞) ≤ 𝑁 because each tuple of 𝑆𝔻 can be extended to at most one solution.

35.1/41

Finer constraints can help
𝑄 = 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥2, 𝑥3).

We have: 𝗐𝖼(𝑄, 𝑁) = 𝑁
2.

Let 𝒞 be the class of databases where |𝑅| ≤ 𝑁, |𝑆| ≤ 𝑁 and 𝑅 respect functional dependency 𝑥2 → 𝑥1.
𝗐𝖼(𝑄, 𝒞) ≤ 𝑁 because each tuple of 𝑆𝔻 can be extended to at most one solution.

Is our simple join worst case optimal for this class?

35.2/41

Finer constraints can help
𝑄 = 𝑅(𝑥1, 𝑥2) ∧ 𝑆(𝑥2, 𝑥3).

We have: 𝗐𝖼(𝑄, 𝑁) = 𝑁
2.

Let 𝒞 be the class of databases where |𝑅| ≤ 𝑁, |𝑆| ≤ 𝑁 and 𝑅 respect functional dependency 𝑥2 → 𝑥1.
𝗐𝖼(𝑄, 𝒞) ≤ 𝑁 because each tuple of 𝑆𝔻 can be extended to at most one solution.

Is our simple join worst case optimal for this class?

Short answer: yes if 𝑥2 is set before 𝑥1.

35.3/41

Prefix closed classes
Recall the complexity of our algorithm: ̃

𝑂(𝑚|𝖽𝗈𝗆| ∑
𝑖 = 1

𝑛 |𝑄
𝑖
(𝔻)|)) where 𝑄

𝑖
= ⋀

𝑅 ∈ 𝑄
∏

𝑥1, …, 𝑥𝑖

𝑅

A class of database 𝒞 for 𝑄 is prefix closed for order 𝜋 = (𝑥1, …, 𝑥
𝑛
) if for each 𝑖 and 𝔻 ∈ 𝒞:

|𝑄
𝑖
(𝔻)| ≤ 𝗐𝖼(𝒞)

𝒟𝑄

≤ 𝑁 is prefix closed (for any order)!

Our algorithm is (almost) worst case optimal as long as we use an order for which 𝒞 is prefix closed!

36/41

Acyclic functional dependencies
𝐹 = (𝑋1 → 𝑌1, …, 𝑋𝑘 → 𝑌𝑘) is a set of functional dependencies:

𝐺(𝐹): vertices are the variables and 𝑥 → 𝑦 if 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑌𝑖 for some 𝑖.
If 𝐺(𝐹) is acyclic, then let 𝜋 = 𝑥1, …, 𝑥𝑛 be a topological sort of 𝐺(𝐹). Then

𝒞
𝐹

𝑁 = {𝔻 ∣ 𝔻 respects 𝐹} ∩ 𝒟𝑄

≤ 𝑁

is prefix closed for order 𝜋 (exactly the same proof as for cardinality constraints).

Hence our algorithm is worst case optimal wrt 𝒞𝐹

𝑁 (as long as we follow 𝜋).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

37/41

Degree constraints
A degree constraint is a constraint (𝑋, 𝑌, 𝑁𝑌|𝑋) where 𝑋 ⊆ 𝑌. A relation 𝑅 verifies the constraint if

max {| ∏
𝑌

𝑅[𝜏]|, 𝜏 ∈ 𝖽𝗈𝗆𝑋} ≤ 𝑁𝑌|𝑋

Cardinality constraint = degree constraint with 𝑋 = ∅.
Functional dependency = degree constraint with 𝑁𝑌|𝑋 = 1.

38/41

Acyclic degree constraints
Δ = {(𝑋1, 𝑌1, 𝑁1)…, (𝑋𝑘, 𝑌𝑘, 𝑁𝑘)} set of degree constraints.

𝐺(Δ): vertices are the variables and 𝑥 → 𝑦 if 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑌𝑖 for some 𝑖.
If 𝐺(Δ) is acyclic, then let 𝜋 = 𝑥1, …, 𝑥𝑛 be a topological sort of 𝐺(Δ). Then

𝒞
Δ

𝑁 = {𝔻 ∣ 𝔻 respects Δ} ∩ 𝒟𝑄

≤ 𝑁

is prefix closed for order 𝜋 (exactly the same proof as for cardinality constraints).

Hence our algorithm is worst case optimal wrt 𝒞Δ

𝑁 (as long as we follow 𝜋).

We need to show that this functional dependencies transfer in the binarised setting but it is almost immediate.

39/41

Bonus: sampling acyclic degree constraints
We can find (𝜆𝑅) such that ∏

𝑅 ∈ 𝑄
|𝑅𝔻|

𝜆𝑅 ≤ ̃

𝑂(𝗐𝖼(𝑄, 𝒞
Δ

𝑁)) for any 𝔻 ∈ 𝒞
Δ

𝑁 (polymatroid bound).

Define 𝑢𝑝𝑏(𝑡) := ∏
𝑅 ∈ 𝑄

|𝑅𝔻[𝜏𝑡]|
𝜆𝑅 :

upperbound of 𝑄(𝔻)[𝜏𝑡] for any 𝔻 ∈ 𝒞Δ

𝑁 ,
superadditive.

We have sampling with complexity ̃

𝑂(𝑛𝑚 ⋅
𝗐𝖼(𝑄, 𝒞

Δ

𝑁)
1 + |𝑄(𝔻)|)

40/41

Conclusion
Simple algorithms and analysis
Modular:

join is worst-case optimal as soon as the class is prefix closed
sampling is in 𝗐𝖼(𝑄, 𝒞)

|𝑄(𝔻)|
 as long as one can provide a super additive upper bound

Future work:
Other classes such as:

cyclic FD,
general system of degree constraints (as PANDA)

Explore dynamic ordering: can we capture more classes?

41/41

